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SIGNIFICANCE AND EXPLANATION

In certain regimes, the propagation of small-amplitude long-wavelength

sirface water waves in a horizontal and uniform channel may be approximately

descriled by the Korteweg-de Vries equation. When actual comparisons of

solutions of this model equation are made with data gathered in the laboratory

or the field, initial and boundary conditions are necessarily appended. Such

comparisons have generally been made using the pure initial-value problem.

That is, the wave profile is supposed specified everywhere in space at a given

instant of time, and the subsequent evolution of the waves is predicted on the

basis of the Korteweg-de Vries equation.

In fact, the measurements typically and most accurately obtained in a

laboratory are temporal traces of the wave, taken at fixed locations down the

channel. Thus, observations are made of the waves' passage at fixed places

along the channel. Measurements so taken must then be converted into initial

data if the pure initial-value problem is to apply. The procedure for such a

conversion is ad hoc, and has recently been called into question as both

unnecessary and inaccurate (cf. Bona, Pritchard and Scott, 1981). These

authors suggest that a certain initial- and boundary-value problem is a more

suitable model for typical experimental configurations. Indeed, they carry

out a detailed comparison of the predictions of an alternative model equation

with laboratory data, using the aforementioned initial- and boundary-value

2- problem.

o The major accomplishment of the present report is to show that the

relevant initial- and boundary-value problem, posed for the Korteweg-de Vries

equation, has a satisfactory theory of existence and uniqueness of smooth

solutions. This sets the stage, in principle, for a more direct testing of

f '.e Korteweq-de Vries model than has heretofore been attempted. Accession For
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THE KORTEWFG-de VRIES EQUATION, POSED IN A QUARTER PLANE

Jerry Bonat and Ragnar Winther

i. INTRODUCrION

The Korteweg-de Vries equation, originally suggested In connection with a certain

regime of surface water waves, has been derived as a model for unidirectional propagation

of small-amplitude long waves in a number of physical systems. Because of the range of its

potential application, and because of its very interesting mathematical properties, this

equation has been the object of prolific study in the last few years. These studies have

generally concentrated on aspects of the pure initial-value problem,

i!~~ ~~ +t u + uu + Uxx 0 , .,

u(x,0) - f(x), (1.2)

for x E R and t * 0, say. Equation (1.1) is a version of the Korteweg-de Vriea

equation in which the dependent and independent variables are non-dimensional, but

unscaled. The initial data f in (1.2) typically decays to zero at infinity, or is taken

to be a periodic function, though these do not exhaust the theory thus far existent (cf.

Bona A Schonbek (7], and Menikoff (20]). For comprehensive descriptions of results

pertaining to the KdV equation, as (1.1) will he named subsequently, the reader may consult

the review articles of Benjamin [33, Jeffrey and Kakutani (141, Lax (17], Miura [21,22] and

Scott, Chu and McLaughlin (24].

The applicability of the KdV equation in a particular context depends on many

factors. Among the more universal of these is that the waves he unidirectional and

essentially one-dimensional in character. It must generally be the case that, at least
$|

locally, the nonlinear and dispersive terms, uux and uxxx, represent small corrections

to the basic one-way propagator ut + ux - 0 (cf. (4], 12). in attempting to assess the
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performance of the KdV equation as a model for waves in a particular system, the pure

initial-value problem may not be particularly convenient. There might he difficulty

associated with determining the entire wave profile accurately at a given instant of

time. One method of obtaining unidirectional waves to test the appurtenance of KdV is to

generate waves at one end of a homogeneous stretch of the medium in question and to allow

them to propagate into the initially undisturbed medium beyond the wavemaker (cf. figure

1). During the time when the waves propagate freely, it may be expected that KXV can

apply. Of course any real medium will have finite extent, and once the waves have been

influenced by another boundary, the experiment should cease, as far as KdV is concerned.

in such an experiment it may be comparatively easy to measure the passage of the generated

waves at a fixed location at or away from the wavemaker. If this is the :tee, the

generated waves can be determined, at or near the wavemaker, and at another station further

away from the wavemaker. One could imagine using the measurement nearest the wavemaker as

data for the KdV equation. It may then be possible to predict, perhaps numerically, the

behavior of the waves further from the wavemaker on the basis of the KdV equation, and to

compare the prediction with the measurements made well away from the wavemaker.

The major accomplishment of the theory presented here is the demonstration that the

program, just described, can, in principle, be carried out. Let us agree to fix the zero

of the spatial coordinate x, which is along the direction of propagation, at the station

nearest the wavemaker where a measurement is to he taken. Then the mathematical problem

that accompanies the above discussion is expressed as the following initial- and boundary-

value problem (cf. again figure 1).

andut + u
x 

+ uux + Uxxx O, for x,t A 0,

and

u(x,0) - f(x), for x 0,

u(0,t) - g(t), for t ) 0.

According to the above general discussion, it could be warranted to take f 0 and to

assume that g, which is determined experimentally, is consistent with small-amplitude

long-wavelength waves. These assumptions will play no role in the theory developed here.
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All that will be required is that f and g exhibit smoothness, which is entirely

appropriate to the use of KdV as a model equation, and that f decay to zero at infinity

appropriately. The smoothness requirement extends to the origin, and results in a certain

compatibility that must be satisfied between f and g. These conditions wil be spelled

out presently.

The same initial- and boundary-value problem has been analyzed for the alternative

equation, proposed by Peregrine [23] and Benjamin, et. al. [4],

ut + ux + uux - Uxxt - 0, (1.4)

in [5). Results related to those established in the latter reference will be derived and

used in the attack on (1.3). The connection between KdV and (1.4) is a regularized version

of problem (1.3), namely,

u t 
+ ux + uux + uxxx " Cuxxt " 0, for x,t )0,

u(x,0) - f(x), for x ) 0, (1.5)

u(0,t) = g(t), for t ) 0,

where C > 0. The regularized problem 11.5) intervenes in a substantial way in the

existence theory for (1.3) developed here. The regularized differential equation appearing

in (1.5) is the same tool used already in [7] and [8] in discussions of various pure

Initial-value problems for XdV. The general outline of the theory herein is patterned

after that developed in [8]. The technical difficulties presented by the non-homogeneous

boundary condition u(0,t) - g(t), for t ) 0, require a more delicate analysis than that

effected in the last-quoted reference.

The present theory may be considered an extension of the earlier work of Ton [27] and

Rona and Heard [6]. Ton's paper undertook the study of the problem,

ut + UUx i uxxx , 0, x,t > 0,

u(x,O) - f(x), X ) 0, (1.6)

u(O,t) - 0, t ) 0.

rf the min-vi sign appears in front of the dispersive term, then the extra boundary

condition u x(0,t) - 0, for t • 0, is appended. For problem (1.6), with the positive

-4-
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sign taken, the methods exemplified in Lions' text [183, combined with the regularization

used by Temam [26], in an early paper on the periodic initial-value problem for KdV, are

used to obtain global existence of weak solutions and local existence of classical

solutions. (The interval of existence is proportional to the inverse of 1f06  in the

notation to be introduced in section 2.)

Actually, problem (1.6) is not an appropriate model for water wave. in a uniform

channel, as is suggested in (271. For the differential equation in (1.6) is written in

travelling coordinates, and consequently the boundary condition, if it is to correspond to

observations of the disturbance at a fixed position in the channel, should be applied, not

at (n,t), for t 0 0, but rather at (-t,t), for t > 0. This awkwardness is easily

obfiscated by the inclusion of the extra linear term ux in the differential equation, an

addition without serious consequence as regards Ton's mathematical proofs. A move serious

objection to the theory developed in [271 is that the homogeneous boundary condition

u(0,t) - 0, for t ) 0, is not well-suited to model waves generated by a wavemaker at one

end of a uniform stretch of medium, as 4ready explained. Moreover, for problems of long-

wave propagation, it is not anticipated that the flow will develop singularities, and

consequ.ently, it is expected that the model equation should have a global theory of

classical solutions, corresponding to suitably smooth data. These drawbacks in the earlier

theory are here shown to be methodological, and not Inherently a property of the model

equation.

In [61, a local existence theory for (1.3) is developed, using the methods of Kato

[16]. The boundary data is required to be mildly smooth, but otherwise arbitrary. For

technical reasons, this theory has not, thus far, yielded solutions defined globally in

time.

It is worth drawing attention to several comparisons which have been made with

experimentally obtained data, pertaining to the originally conceived application of the KdV

equation to small-amplitude surface water waves. We cite the studies of Zabusky and Galvin

(311 and Hammack and Sequr (131, and of Hamnaok (12) using equation (1.4). These studies

all used pure initial-value problems for their theoretical predictions, even thougn the

-5-
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experimental configuration was exactly as described earlier, in justifying the further

study of the initial- and boundary-value problem considered here. That is, a uniform

channel of water, initially at rest, had waves generated at one end by a wavemaker. The

waves propagated down the channel ant their passage was recorded at various stations along

the channel. Entailed in each of these studies was a transformation of data measured over

time, at a fixed location, to data measured spatially at a fixed instant of time. The

approximate transformations used in the above-quoted studies introduce errors, which can be

analyzed. In fact, the forthcoming work [10) addresses this issue in some detail, and

consequently it is not taken up here, except to report that quite significant errors,

particularly as regards the phase speed, can be expected when using the approach of

converting the boundary-value problem to a pure initial-value problem.

It is also worth noting that, at least for surface water waves, damping effects need

to be considered. Such effects were introduced, in an ad hoc way, in (121 and [131, and

more systematically in [10]. An additional term that models the damping due to the

boundary layers on the bottom and sides of a uniform channel of shallow water has been

derived carefully by Kakutani and tatsuuchi [15] at the level of approximation entailed in

the KdV equation. The Incorporation of such dissipative terms in the initial- and

boundary-value problem (1.3) is under study, but will not be addressed here.

The paper is organized as follows. Section two sets out the notation and terminology

to be used subsequently and presents a sample of the main results in the paper. In section

three, the regularized problem (1.5) is considered, and is shown to admit a satisfactory

theory, when C is fixed and positive. A priori C-independent bounds for solutions of

the regularized problem are derived in sections four and five. Passage to the limit

C + 0 is effected in section 6, where smooth solutions of the initial- and boundary-

value problem (1.3) are shown to exist. The paper concludes with some commentary

concerning aspects not covered in the present study.



2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

For an arbitrary Banach space X, the associated norm will be denoted |XI The

following spaces will intervene in the subsequent analysis.

If a is a bounded domain in Rn, then CJ(A) denotes the space of real-valued

functions which have classical derivatives up to order j in 0, and whose derivatives, up

to order j, extend to a continuous function on f. If J - 0, C0 () will be denoted

simply C(n). The norm on C(n) is

Ifoc( ) sup If(x)I,

and the norm on CJ(n) is

r a
Ifl L t laafl , (2.1)

.-ii cJ14 l C(

where a - (a1 ',.*'Un) is a multi-index of non-negative integers, j a al + a +n

and

Iai f(X)
f(x) = a aL

axl, .. xnn

The notation 3r  for 3r/axr and r for r/at r  will be employed throughout when it is
x t

convenient. If 1 is unbounded, Cj(n) is defined exactly as in the case that Q is

bounded except that the function and its derivatives are required to be bounded. The norm

is again defined by (2.?).

The space C( ) A . CIO) will be used, but its usual Frechet-space topology will

not be needed. 0(g) is the subspace of C'(n) of functions with compact support in 0.

Its dual space, V'(Q), is the subspace of Schwartz distributions on 1.

If S is open in Rn, then CJ(0) is the continuous real-valued functions defined on

0 and possessing classical derivatives up to order j which are continuous on n. No

restrictions are placed on the behavior of the functions near the boundary of Q. This

class can also be given a natural Frechet-space topology, but this topology will not figure

in the developments here. Naturally, C (f) -(9 C)f,.

-7-
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If T > 0, we will systematically use the abbreviation C(0,T) for CU[O,Tfl.

Similarly, Cm (0,T) will stand for Cm([0,T]).

For any real p in the range [1,m), Lp(fl) denotes the collection of real-valued

Lebesgue measurable p t-power absolutely integrable functions defined on n2. As ustial,

L (1 ) denotes the essentially bounded real-valued functions defined on Q). These spaces

get their usual norms,

Efi (f If(x)IPdxll/P,

for 1 4p < and

EfI essential suprelaum If(x)l.

If I < p 4 a and mi > 0 is an Integer, let W3 O P) be the Sobolev space of L 1)

lunctions whose distrihutional derivatives up to order ms also lie in LP(SI). The norm on

WmIP (a) is

Iflp a p laufip

When p -2, vHiP(fl) will be denoted Hm(fl). This is a Hilbert space, and

H 0(0) - L 2 (1). For a > 0, not necessarily an integer, H a 01) is defined by

interpolation. For a )- 0, H A~ is the closure in H (a) of DOf). For s > 0,
0

H9 (11) is the dual of H (A2 with respect to the pairing which is the extension by

continuity of the usual L 2 (12-inner product. The non-integer order Sobolev spaces only

intrude at one point in our analysis, and then only in the interest of sharpness. Details

'1 concerning these spaces may be found in Lions & Magenes' work [19] or in Stein's text (251,

for example. The notation H"(I) - n 1 Hi(i) will be used for the C O-functions on S1,

all of whose derivatives lie in L 2((A.

Finally, M 7(2) is the set of real-valued functions f defined on S1 such that,
lo5

for each o E OIf), 0f E I~i (). This space is equipped with the weakest topology such that

all of the mappings f * 0f, for 0 E V(n), are continuous from H Is(11) intoa
boc

H a(2). With this topology, 4 8 (n1) is a Frechet space (cf. Treves [28]). Let f
boc

denote the positive real numbers, (0,m). A simple, but pertinent example of the localized

-8-



S +

Sobolev spaces is HS (R ). Interpreting the foregoing definitions in this special case
bc

(g H + () if and only if g t H(0,T), for all finite T > 0. Moreover, g + g

in H (R+ ) if and only if g + g in HO(0,T), for each T > 0. Here and below, the
boc n

abbreviation Hs(0,T) has been used for Hs((O,T)).

In the analysis of the quarter-plane problem (1.3), the spaces Hs(i0) will occur
+

often, with a a positive integer and S1 - R or S - (0,T). Because of their frequent

occurence, it is convenient to abbreviate their norms. Thus let

I-I .I and I*I - *. (2.2a)
g H (R+) s,T HalOT)

If s = 0, the subscript will be omitted altogether. So

EI L 2 and 1 T -T , . (2.2b)

Some special cases of the Sobolev embedding theorems will he used occasionally and are

worth recalling here. Let I be an open interval on the real line, not necessarily

bounded. If g >/2+ m, where m is a non-negative integer, then

H 6I) c Cb(i), (2.3)

S algebraically, and continuously with respect to the norms on these two spaces. (More

precisely, an element in HS(I) is, after possible modification on a set of Lebesgue

measure zero, a cm-function on I, all of whose derivatives up to order m are uniformly

continuous on I, and so may be extended to i.) In the special case where I R+ and

s - k, a positive integer, its also useful to recall that if f e Hk( +), then,

f(x), f'(x),'*,,f (x) 0, as x +. (2.4)

An inequality that will find use is the following, valid for f c H (3). According to

(2.3), such a function is bounded and continuous on 1R+ , and furthermore,

If + -C (IfI IV ) 1/2. (2.5)

This inequality, which is sharp in fact, follows from the observation that, for any y C

It, and f e H I(Re),

f 2 (y) - -2j^ f(x)f,()dx < 2 ({f2(x)dx I Ifcf'(x)j 2dxl 1/2

y y y

4 2Iflif't.

-9-
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Spaces will be needed to describe the evolution in time of the spatial structure.

If X is a Banach space, I p 4 0, and - 4 a < b ( -, then LP(a,bjX) denotes the

space of measurable functions u:(a,b) + X whose norms are pth-power integrable (essen-

tially bounded, if p - ). These are Banach spaces in their own right, with the norms

EI{fbu(t)1P dt) 1/  , for p <
LP(a,b;X) 

a
and

Eu' = essential suppremum(Iu(t)| XL (a,bjX) t c (a,b)

The subspace of L (a,bIX) of continuous and bounded functions u:[a,b] + X is denoted

Cb(a,b"X?. (In case a and b are both finite, the subscript b, for "bounded", is

iropped.)

These spaces all possess localized versions. The only one appearing here is the space

L7oc(i+;X) of measurable maps u:R + X which are essentially bounded on any compact

subset of R

Finally, if X is still an arbitrary Banach space, we may consider the X-valued

distributions D'(a,bX) on the interval (a,b). Formally, D'(a,blX) is the set of

linear and continuous maps of 0(a,b) into X. If T c V'(a,bgX), its distributional

Airivative is defined by

dT( =

for ; E D(a,b). Thus, if f E LP(a,bpX), then f may be viewed as an X-valued

distrihution via the definition

f(O) f fbf(t) (t)dt.
a

Ufor o V(ab). The integral is, of course, X-valued, and converges since P has compact

support. Thus, "temporal" derivatives of LP(a,baX)-functions may always be defined, at

least in the distributional sense. There is a considerable theory pertaining to when

distributional derivatives are in fact classically defined. Some of these results will be

called upon later. Specific uses of this theory will be referenced precisely, but the

reader may consult [18], [19], [251 or [28] for general commentsry concerning such issues.

-10-



The following is a special case of the main result of this paper. It serves

simultaneously to give orientation and define the goals of the paper.

THEOREM. Consider the initial- and boundary-value problem (1.3) and suppose that the

data f,g has f E H44 (*+ ) and g c H2 (+ ). Suppose that f and g satisfy the
loc

compatibility conditions,

g(o) = f(O)

and

gt(0) - -(fxxx(o) + f(0)fx(0) + fX(0)).
., + 4 +

Then there exists a unique solution u in Lo(R ;H (2)) of (1.3) corresponding to the

data f and g.

Remarks. By the term "solution", we will always mean, in the first instance, a

solution in the sense of distributions on the quarter plane. The term classical solution

is reserved for a function which is continuous and continuously differentiable the

requisite number of times, and which satisfies the differential equation pointwise

everywhere, and the initial and the boundary condition pointwise.

Note that since g c H CR +), g E C (0,T), for any T > 0. Also, f c H 4(R
loc

3 -+
implies f r Cb(R ). In consequence, the compatibility conditions are both well-defined.

The first compatibility condition simply expresses the continuity of the solution u at

the origin. The second condition would necessarily hold for a classical solution.

The theorem above is a part of the)rem 6.2 below. There it will also be established
3•+1 +k+

l

that i F "E7+1 (R) and g E 1i kc( ), where k is a positive integer, and if

corresp,,lloqily higher ordeor compatibility conditions hold, then the solution u lies in
H3k+1 +.

the class L o(R+ ;H (R )). In particular, if k > 2, it is easily inferred that u
1 oc

.s a classical and global solution of the quarter-plane problem for the KdV equation.

-il-



3. THEORY RELATING TO THE REGuLARIZED PROBLEM.

In this section, interest will be focused entirely on the regularized initial- and

boundary-value problem (1.5), repeated here for convenience.

ut + ux + uux + Uxxx - EU x t - 0, for x,t ) 0, (3.1a)

with

u(x,0) - f(x), for x 0,

(3.1b)

u(0,t) - g(t), for t • 0.

For consistency, the restriction,

u(0.0) - f(o) - g(0), (3.2)

will be Imposed throughout the discussion. For the present, the positive parameter C

will be treated as a fixed constant, in the range (0,13,. say. Following the development

in [81 , let

V(x,t) - CU(C /2 (X.the 3/2 t). (3.3)

It is immediately verified that u Is a smooth solution of (3.1) if and only if v is a

smooth solution of the problem

v + (1+)v + vvx - Vt - 0, in f, (3.4a)

and

v(x.O) - F(x), for x • 0,

(3.4b)

v(t,t) - G(t), for t • 0.

Here - {(x,t) t -0 and x > t, F(x) = f(C V2x), and G(t) - cq(c 3/2t). The

dependence of F and G on C is suppressed, since E is viewed as fixed here. Of

course (3.2) implies end is implied by

F(0) - G(0). (3.5)

The initial- and boundary-value problem (3.4) is somewhat peculiar, owing to the domain (a

sector of angle 1/4) in which it is posed (cf. PFqure 2).

-12-



X=t

V-G

Vt +(l~v +v -~=

v=F x
Figure 2

The reqularized problem, after the change of variables.

Related initial- and boundary-value problems have been analyzed by passing to an

associated integral equation. This method proves to be effective in the present

circumstances.

To convert (3.4) into an integral equation, proceed formally as follows. Write (3.4)

as

•v -(I+r)v vvx
t xtx xf

and, for fixed x ) t, integrate this relation over the temporal interval (O,t). There

appears

w - Wxx - S, for x > t, (3.6)

U where

w(x,t) - v(xt) - F(x) and S(xt) - - ft((+)v X(xs) + v(x,s)v x(x,s)]ds.
0

The solution of (3.6) may be expressed in the form

w(x,t) - ae-x + 1/2 r e'lx'flS(l,t)d&, (3.7)
t

by the variation of constants formula. Of course a a(t) and it has been assumed

-13-



tacitly that S and w are bounded. If t ) 0, then at x -t,

G(t) - F(t) - v(t,t} F(t) -w(t,t)

= Q(t)et +/ 2  e S( ,t)d&.
t

Hence,

Q(t) - etlG(t) - Fit) -1/2Jf e- S(,t)d}. (3.8)

t
* The result of (3.7) and (3.8) is that

v(x,t) - F(x) + e -(x-t) (G(t) - F(t))

_1/2 G-(x-t) r e-It-& S(g,t)d& + 1/2 efe'l s(,td.

t t

Since C ) t, this simplifies to

v(x,t) - 7(x) + e- (xt)(G(t) - F(t)) + r M(x-t,C-t)S(E,t)dt, (3.9)

t
where

M(y,z) -1/2 [exp(-ly-zl) - exp(-(y+z))]. (3.10)

Replacing S by its definition in terms of v, and integrating once by parts, (3.10) may

be expressed in the form

v(x,t) - F(x) + e (x-t)(G(t) - F(t))

(3.11)

+ f Klx-t,&-t) fI(l+)v(Cs) + 1/2 v
2 (C,s)ldsd4,

t 0
where

K(y,z) -1/2 Lexp(-y-z) + sgn(y-z)exp(-Iy-zI)1. (3.12)
-I x-CI

The boundary term that appears in the integration by parts vanishes because e -

-Cx+C)+2t
e when C - t and x 0 t. Notice that K(O,&-t) 2 0, so that v(t,t) - G(t),

for all t ) 0. Note also that vix,0) = F(x), provided the consistency condition (3.5)

holds.

Equation (3.11) is the desired integral equation. It has been derived formally, and

thus far its relation to solutions of (3.4) is not rigorously established. Our object now

is to make a rigorous connection between solutions of the integral equation and solutions

-14-
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of (3.4), and to show that the integral equations possesses solutions# at least for small

time intervals.

Turning to the second objective first, let T > 0 and let CT be the Banach space

of bounded continuous functions defined on the closure of the set

S - ((xt) : t E (O,T) and x > t.T

CT is equipped with the supremum norm. Let A denote the operator that maps a function

w E CT  into the function

(Aw)(x,t) - F(x) + e (G(t) - (t))

(3.13)

+ Y K(x-t,&-t) f[(l+)w(&,s) +1/2 w
2
( ,e)]dsdC,

t 0

defined for (x,t) c D. Because the kernel X is integrable, and assuming that F

and G are bounded and continuous, it is plain that Aw c C also. Existence of a

solution of the integral equation (3.11) will be provided by showing that, for T small

enough, A is a contraction mapping of a ball centered at the zero function in CT. The

following estimate is the basis on which this assertion is established.

Let u and w be elements of CT. Consider the difference of their images under the

operator A,

Au(x,t) - Aw(x,t)

- 1 (x-t,&-t) ft[l+c +
1/2 u(4,s) +

1 /2 w(&,s))[u[&,s) - w(t,s)]dedE.
t 0

For t fixed in the interval CO,T],

sup JAu(x,t) - Aw(x,t)l 4

x)t

sup fIK(x-t,-t)ld • sup ftll+e +1/2 u(C,s) +
1/2w(4,s)Ilu(t,s) - w(E,*)Ids.

)t t 't a

But, for x t,

-15-
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f"IK(x-tC-t)IdC 1/2~ 12t-(x+g) + sqn(,-&)e '-IdC
t t

iv2 ,,2t(x+ - ex- I A + 1/2 f' (a2t-(x+&) + e.- d
x t

62 (Ct-x

Hence, as 0 (t 4T,

sup IAu(X,t) Aw(x~t)l 4 sup JtIi+Z 1i/ 2 ut&,s) + 1/2 w(C,s)l Iu(C,s)-w(C,s) Ids
x),t Ch o

T T T
rt follows that

IAU-AvI C - supw IAu(x,t) - Aw(x,t)I.

T (X,t)gdl
(3.14)

TG T( +E) +/2(l CT+ l C T C T.

This inequality implies the desired result. Let G(x,t) :- 0 and set

R(T) - 2IA01 C 41FI - + 21GI (3.15)

T C b (a C(0,T)

Let ST (w E CT: lwi 4 R(T)) and let
T CT

(T) - T11+E + R(Tfl. (3.16)

Then it follows straightforwardly that, for u and w in Br

VAu - AwlC 4 &~T)Ilu-wiC

and
IAuI 'Au - AOIC + IA61 C

T T T

f((T)IuIc +1/ 2 R(T)
T

JO((T) + 1/2 )R(r).
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Because of the last two inequalities, A will be a contraction mapping of BT if

G(T) C 1/2. Referring to (3.16), one appreciates immediately that, for fixed data F

and G, this certainly holds for T sufficiently small. In fact, it is worth noting that,

essentially because of the inequality in (3.15), for any M > 0 we may take

min( M, 2(1+ + 411U + 231G I }'  (3.17)

Cb(' C(o,4)

and have E(T) <1/2. Thus (3.11) has a solution in CT, for T sufficiently small.

This result is summarized formally in the following.

PROPOSITION 3.1. Let M > 0, 0 4 C(0,M) and F e C (W+) with P(0) " G(0). Then
b

there exists a positive constant

To -T(IFI -+ ,IGI )Cb0 C(0,M)

such that for any T' with 0 < T' 4 min(T0 ,M), there is a solution of (3.11) in CT,.

Moreover, for any T C (0,M], there is at most one solution of (3.11) in CT .

Proof. The question of existence has already been settled. Suppose there are two

distinct solutions v and w of (3.11) in CT. Since v and w are continuous, there

is a to C [0,T) such that v E w on 0, and on no domain At is this still true, if

t > to. Let U(x,t) - v(x,t) - w(x,t), in t Define

U0 (x,t) - 7(x) + 0-(x-t) (G(t) - F(t))

+ (X-t,E-t, l/ ('+C)O(Cs) + 2 U
2 (Cs)]dsdC,

t 0

for (x,t) e D - {(x,t)st 0 4 t 4 T and x t}. Plainly U. is bounded and continuous

on n. Then the integral equation

-17-

k;



u(x,t) - 0o(X,t) + rK(x-t,C-t) f' [(1+&)u(C,s) +/2 u
2( ,s)]dsd

t to

- Au(x,t),

defined on D, has two distinct solutions, which we denote by v and w again, though

they are in fact v and w restricted to D. Moreover, while these two solutions agree

at to, they do not agree identically in any neighborhood of to .

The existence argument presented above is easily adapted to show that, for R large

enough and for t1 - t(R) near enough to to, A is a contraction mapping of the ball

B R of radius R centered at the zero function in Cb(D1), where

D - (x,t) : t < t t t and x > t.
10 1

But if

R ) max{Ivl IwI1T,
C' CT

then has two distinct fixed points v and w in B R This contradiction forces the

conclusion v S w on aT' and the proposition is established.

It will be important in subsequent sections to have smooth solutions, up to the

boundaries, of the regularized problem (3.1) at our disposal. This amounts to the program

of relating solutions of the integral equation (3.11) to solutions of the transformed

problem (3.4). The following result will be sufficient for our later needs.

PROPOSITION 3.2. Suppose that F c Cb(i + ) and G E Cm (O,T0 ), where k ) 2,

m ) 1, and k ) m. Suppose also F(O) - G(O). Let v be a solution in CT of the

integral equation (3.11), where 0 < T 4 T 0 Then

aiajv C CT , for 0 C j C m and 0 4 i 4 k+j. (3.18)

Moreover, v is a classical solution of the transformed problem (3.4) in AT" Conversely,

if v lies in 1 and is a classical solution of (3.4) on §T, then v is a solution of

the integral equation (3.11) over T' and so v satisfies (3.18).
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.4

Remark The partial derivatives in (3.18) may be defined at the boundary of a) by

the obvious one-sided differential quotients. The reader will appreciate that a function

v defined on T does not possess a classically defined partial derivative with respect

to t at the point (0,0). in case j > 0 in (3.18), the condition Di iv e C connotes
xt T

that this partial derivative exists classically in D \ {(0,0)}, is bounded and

continuous there, and that it may be extended continuously to D T

k -+

proof. First note that if F e Cb(f ) and G . Cm(0,T), where k m a, then

v0(x,t) - F~x) + e'Xetl(Gt) - F(t)) (3.19)

has a v E C_, for 0 4 1 k and 0 < j 4 m. Also, since v E CT, then
xt0 T

J(x,t) = 2t11+c)vlx,s) +l/2 v
2
(x,s)Ids (3.20)

0
has t CT. A short calculation using Leibniz' rule confirms that

- (t(xt) V 0(x,t) - X(x-t,0)J(t,t) + ft[K(x-t,C-t)]J(C,t)dC
t

+ fx(x-t,4-t)J t(,t)dE.
t

t %Simplifying,

vt (x,t) = v a(x,t) - e(x-t) J(trt) + r.2t-(x+&) l ,t)dt
t

(3.21)

+ r Klx-t,&-t)J (,t)dt.
t

t
Thus Vt C C

By dividing the range of spatial integration at 4 - x, it is readily seen that

vx C T' and that

vx(xt) = aV0(X,t) + K_(x-tx-t)J(xt) - K (x-t,x-t)J(x-t)

(3.22)

+ ]Llx-t,&-t)jl&,tld&,

t

where

L(y,z) = - (2 {exp(-Iy-z 1 + exp(-y-z)},

(3.23)

K (x-t,x-t) lim K(x-t,&-t),
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and C x+ means C + x while C x- means C t x. Thus it appears that

v x(x,t) = v o(X,t) + J(x,t) + L L(x-t,&-t)J(E,t)d4. (3.24)
t

Since k ) 2, xv0  may be differentiated with respect to x. Moreover, since vX CTI,

J(x,t) may be differentiated with respect to x. And, the integral on the right side of

(3.24) may be differentiated with respect to x. Performing the indicated differentia-

tions, we see that

v x,t) = Vx,t) + Jx(x,t) * (r(l-t,t-t)JlC,tld4. (3.25)
t

This representation shows plainly that Vxx CT. Formula (3.25) may be simplified by use

of the original integral equation. Thus,

SVxxl,t) = a2vo (x,t) + J (x,t) + (vlx,t) - VolX,t)

-- 3 (x,t) + v(x,t) + r (x) - F(x) (3.26)
x xx (.6

- ft[(l+C)vx(x,s) + v(xs)v (xsflds + v(x,t) + F (x) - F(x).

0 xx

It is now clear that vxx is differentiable with respect to t, and that

v xxtX,t) - (1+C)v x(x,t) + v(x,t)v x(x,t) + V t(x,t).

So, if k ) 2 and m ) 1, any solution v in C of the integral equation (3.11) is aT

classical solution, up to the boundary, of the transformed differential equation (3.4a).

As already remarked, a continuous solution of (3.11) has v(t,t) - G(t), for 0 4 t 4 T,

and has v(x,0) - F(x), for x 0 0, provided the consistency condition F(0) - G(0)

holds.

Further regularity of a CT-solution of the integral equation may be established by

similar arguments. As this issue is important in our subsequent investigation, a little

more detail is warranted.

First, If m ) 2, then since vtc CT, it follows that every term on the right-hand

side of (3.21) is differentiable with respect to t. Moreover, each of these derivatives

lies in CT, as is easily verified. So vtt e This argument may now be iterated, with

the conclusion that a2v f CT, for 0 5 j 5 m.
t T
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A similar argument, based on (3.26), may be used to show that iv C for

0 < i ( k. Specifically,

Z+2 v(xt) I av(x,t) + a 1+2 F(X L L~

(3.27)

1+1 2+ ft x+ ((1+)v(x,s) + /2 v (xs))ds,
0

for I 0,1,*'*,k-2.

Since vt e CT , it follows from (3.24) that Vxt C and that

Sxt ) = v CX,t) + J (x,t) + e (x-t)Jlt,t)

(3.28)

+ fL(x-t,z-t)Jt (,t)dE - r.e2t'(x+E)JlC,T)dC.
t t

Finally, by using the differential equation, the results already derived, and

induction, mixed partial derivatives of the form ai Ov, where j A I and i A 2, arex t

seen to lie in C,, provided that j 4 m and i € k+j.

If, on the other hand, v is a bounded classical solution of the differential

equation (3.4a) which satisfies the boundary conditions (3.4b), then necessarily F(0)-

G(O) because v is continuous at the origin. Moreover, in this case, each step of the

formal construction leading from (3.1) to (3.4) is easily validated. In consequence, v

is seen to satisfy (3.11). Hence by the argument just elucidated, pertaining to solutions

of the integral equation (3.11), v satisfies the conditions of regularity in (3.18).

This concludes the proof of the proposition.

In our subsequent analysis, it will be convenient to have at our disposal smooth

solutions of (3.1) which are not confined to R x(O,Tj where T is small. This

corresponds to providing smooth solutions of (3.4) on nT where T' is given. It seems

natural to iterate the local result propounded in proposition 1. This will be effective as

soon as an a Ryiori bound on the L"-norm of a solution defined on n is provided. More

precisely, suppose a classical solution v of (3.4), defined on T for some T > 0, is

-21-
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in hand. And suppose the boundary data G is defined at least on (O,To], where T0 
>

T. Consider a new initial- and boundary-value problem,

wt + (1+E)w + ww - " 0, for (x,t) such that
x x xxt t ) T and x > t,

with (3.29)

w(x,T) = v(x,T), for x ) T,

w(t,t) - G(t), for t ) T.

The initial value of w is the terminal value of v. Just as for (3.4), (3.29) may be

converted to an integral equation, which in all aspects is similar to (3.11). A solution

to this integral equation may be inferred to exist on some domain of the form

((x,t): T 4 t 4 T + AT and x ) t).

Provided v and G are smooth enough, the solution w of the integral equation will

provide a classical solution of (3.29). In this manner, v is extended to a solution of

(3.4) on *T+AT As in proposition 1, a lower bound for the size of AT depends on the

L -norm of the data in (3.29). Specifically referring to (3.17),1 -}

AT ) minIT0' 2[1+e + 41v(-,T)c +(T ,) c(T,T0)

Suppose it was known that, for the given data F and G, any solution v of (3.4) defined

on nT for some T ( To, has the property that
T0

Ivl C 4 C - C(T0 F,G).

.' T

'4 Then a lower bound on AT can be imputed, and in consequence, after a finite number of

steps, the solution may be extended to D This conclusion is worth stating formally.

_!
k -+

PROPOSITION 3.3. Let T0 > 0 be given, and G c Cm(0,T 0 ). F c Cb(R ) with F(0)

G(0), where k ) 2, m ) I and k - m. Suppose there is a constant C, dependent on To,

F and G, such that for any sclution w of (3.4) defined on nT' where T < To,

wc( ) C. (3.30)
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Then there exists a unique solution vt CT to (3.11), which is also a classical solution

of (3.4) and which satisfies the conditions of regularity expressed in (3.18). Moreover,

v is defined locally as the fixed-point of a contraction mapping of the type in (3.13), by

iteratinq the result of proposition 3.1 a finite number of times.

Provision of the relevant a priori bound is now considered. To this end, the

following technical lemma is useful.

LEMMA 3.4. Let F e Cb(R ) an6 G C Cml0,T 0 ) with F(0) - G(0), where k ) 1,

m ) I and k > m. Let v be a solution of (3.4) in CT0. Let 0 4 p ( k and suppose

that

33 F(x) + 0, as x + , (3.31)

x

for 0 4 j 4 p. Then,

aiaiv(x,t) + 0, as x +, (3.32)
xt

uniformly for 0 4 t 4 To , for i,j such that 0 ( i ( m and 0 ' j 4 p+i.

Proof. Suppose it is determined that v(x,t) * 0 as x + +1, uniformly for

0 ( t 4 T.0 Since v is a classical solution of (3.4) on nT0, it satisfies the

integral equation (3.11) on DT. Referring to formula (3.21) for vt, it is clear that

v t(x,t) + 0 as x + +-, uniformly for 0 4 t 4 T 0  If m > 1, then upon

differentiating (3.21) with respect to t and using the fact that v and vt tend to

U 0 at + , it is straightforwardly assured that v (x,t) 
+ 

0 as x + -, uniformly for
tt

0 < t Q TO . Continuing inductively, it follows that

3'v(x,t) + 0 as x +,
t

for 0 4 i4 m, uniformly for 0 4 t 4 TO0

Next, by considering formula (3.22), we see that if p > 0, then v (x,t) * 0 asx

x + ', uniformly for 0 t < TO • Then from (3.28), v xt(x,t) 
+ 
0 as x 

+

uniformly for 0 4 t 1 T • From the differential equation (3.4a), it is seen that

vxxt (x,t) + 0, as x +, uniformly for 0 4 t ( T . Continuing in the pattern of the

proof of proposition 3.2 leads to the conclusion that (3.32) holds.
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The above analysis was all predicated on the desired result holding good for v

itself. The lemma will therefore be established as soon as it is confirmed that (3.32)

holds for i - j -0.
0

For T > 0, let C be the closed subspace of C composed of those elements which
T T

converge to 0 at +4, uniformly for 0 4 t ( T. If F(x) * 0, as x + +-, then

operators of the type exhibited in (3.13) map C into itself. Because a solution v of
T

(3.4) is provided in CT0,# the uniqueness result of proposition 3.1 implies that condition

(3.30) holds. So v is obtained locally as a fixed-point of a contraction mapping of the

form in (3.13). This fixed-point may be determined by iterating the operator on the zero

function 8. The sequence (VnI thus generated (vi = A8 and vn+ - AVn, foL

n ) 1) lies inC and converges to v in C. Therefore v E &. As a finite number
lpT LT.Aafiienmr

of such steps are needed to recover v on , it follows that v 6 CO. This concludes

the proof of the lemma.

Attention is now turned fully toward derivation of a priori information concerning

smooth solutions of (3.4) which imply (3.30). A bound that will suffice is the subject of

the next proposition. The same bound will also be needed in section 4. Because of this,

it is especially convenient to derive the bound in the context of (3.1). Of course the

reader will realize that the theory, thus far developed for (3.4), implies the existence of

smooth solutions of the regularized problem (3.1), at least locally in time. This is

simply a matter of tracing the inverse of the transformation (3.3) which led from (3.1) to

(3.4). The precise result is spelled out in theorem 3.8. For now, it is simply assumed

that a classical solution of (3.1) is in hand.

PROPOSITION 3.5. Let f E Cb(R b , g E C (0,T), where f(0) = g(0), and suppose
---.

0 < C 4 1. Let u be a classical solution of (3.1), up to the boundary, on R X(0,T].

Suppose in addition that f H I(R+). Then for all t E [0,T), u(,t) C H1 ( ).

Moreover, there are positive constants a0  and a,

a 0 (IfI + 6% If x Ilg1,T)

and
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a, " al (lf611#1 lT i

depending continuously on their arguments, such that,

luo.,t)l 4 a0  (3.33)

and

Iu(,t)I + 0 u:(0,s + (U (0,5) - Cu (0,.))2]d s " (3.34)

for 0 4 t 4 T . These inequalities hold uniformly for C in (0,1].

Remark. While not stated explictly here or later, the various constants that appear

in the development of our theory generally depend on T. Besides a direct dependence on

T, 80 and a, also depend indirectly on T via the HI(0,T)-norm of g, 1g11,T" The

reader will quickly perceive that 80 and 81 may be presumed to depend monotonically

on T, for given f and g. In fact, a0 and a, may be assumed to depend monotonically

on their arguments generally, but this will not be needed here.

Before proving the proposition, the following corollary result is stated. This is the

result of central interest for the present section.

COROLLARY 3.6. Let F 6 {(+) and G C C
1
(,T) with F(0)= G(0I. Suppose inI

addition that F E H (I+). Then there exists a constant C, dependent on IFI1  and the

H I (0,To)-norm of G, such that any classical solution v of (3.4) defined on nT, for

T ' To, satisfies

Proof. Let v be a classical solution of (3.4) on iT, for some T < T 0  The

0a

inverse of the change of variables (3.3) is

u(xt) - E-Ivl6- /2x + C 3/2t,C 3/2t). (3.35)

-4 -3/2Then u is a classical solution of (3.1a) on Ix(0,T'j, where ' - C T, which

satisfies the auxiliary conditions (3.16) where

f(x) - N C 1 l/2
x) and g(t) - I G(C-

3
/
2
t). (3.36)
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Here C > 0 is fixed, and so f and q satisfy the hypotheses of proposition 3.5. Hence

the H1 (e)-norm of u is bounded on [0,T'] by a constant that depends on I*lf1 and on

the HI(0,T1)-norm og,T; Of g, say. Here, T; - C3/2T.o Because of the basic

inequality (2.1), it follows that u is bounded on R x[0,T') by a constant C dependent

only on IflI and I9 1,TI" In particular, C does not depend on T' for T' in the
0

range !O,TI.*

But, v is defined from u via the transformation (3.3). Hence the desired result

follows, and the corollary is established.

Proof. (of proposition 3.5.) First note that since f E 3( W) n HI (3), f(x), f'(x),

f"(x) 4 0 as x + +- (cf. 19]). Let v be defined from u as in (3.3). Then by lemma

3.4, aia ,(x,t) * 0, as x +, uniformly for 0 4 t 4 T, for 0 4 j 4 a and
x t

0 < 1 4 2+j . Because u is recovered from v by (3.35), 3 P u(x,t) + 0, as x* +m,
xt

uniformly for 04 t ( T, for P and V with P + V ( 2. Thus u, ux, ut, Uxx, uxt and

utt tend to zero at +1, uniformly for 04 t 4 T.

Let U(x,t) = g(t)e - x and w - u - U . There is a constant c. such that, for

0 t T,

IU(,t)1 4 Ig(t)1 < CI9 g1,T*

So to prove (3.33), it is enough to establish a similar estimate for w. Now w satisfies

the initial- and boundary-value problem

+ w + ww + w - Lw 0 - (wU) , in C x10,T], (3.37)t x X XXX xxt x

where = -(Ut + U + UU + U -U ), and*t x x xxx Uxxt'

w(x,O) - f(x) - g(O)e 
-

, for x E f+

(3.38)

w(O,t) = 0, for t c[O,T].

Multiply (3.37) by 2w and integrate the resulting expression over (0,M)X(0,t). There

appears, after integrations by parts, and using the auxiliary conditions (3.38),

-26-



(w~~t)~ ~ ±2 12(,t) ldx +Jw(O,s)ds - j(w'(.,O) + Ew'(x,Ofldx

0 x0 x0

+ -w 2 (Ms)- 2 w3 (M,s)_2w(M,sW (M,aS)+w 2(M,9S)+2Cw(l4,S)wx (Me) (3.39)
0

-
2 (M 5)0CM s)lds + 2 ft f" (x,.)w(.,s)dxd. - ff" U -(x-s)2 (,a)dxds.

0 0 0 0
Because U(x,t) = g(t)e

- x
, it follows that

Kul -+ ,u I 4 Igl c(O,T) CSIqI1T.Cb(IR x[O,Tl )  C Cb W~X[,TI)

And similarly, since C 4 1,

mP(,t)l 4 21q'(t)l + 21g(tHl + g2 (

so that

ft fM 2(x')dx, s  CI(IgllT

0 0

for all (M,t) E R x[0,T]. If

WM(t) - fM [w2(x,t) + cw2(x,t)Idx,
0 x

and if hM  denotes the supremum, over 10,T), of the second integral on the right-hand side

of (3.39), then the inequality,

WM(t) e WM(0) + hM + C 1(I9g IT + c.Igt1'T ft WM(S)dS,
0

emerges. Gronwall's lemma implies
c tlgl I,T

W M(t) 4 [WM(0) + hM + C(Igicl,T)I

for 0 4 t 4 T. Reference to (3.38) will convince the reader that w(*,0) -H (a). So

WM(0) is bounded, as M + . In fact,

W (0) + [w2 (x,0) + w 2(x,0)Idx = W(0)M x0

as M +. Since u and u x  tend to zero as x +, uniformly for 0 C t 4 T, so also

do w and wx . It follows that h 0 as H * +m Hence,

-- cTj gI I,T

lim W (t) 4 (W(0) + C (IgI le

MM 1 i,T

for all t 10,T). Thus for each t (-[0,T], w(-,t) E H ( R), and

IwI C 2(IfI + I/2 If'g 1),
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for any C in (0,11. This in the desired bound on the L2 (3 )-norm of w, and so (3.33) is

shown to be valid.

*Now multiply the regularized equation (3.1a0 by the combination 2ut- 2u xx -

and integrate the resulting relation over R +x(O,t). After integrations by parts, in which

the fact that u and various of its derivatives vanish at 4W is used repeatedly, it is

verified that

(1+;)fu 2 (x,t)dx + ffu 2 (0,8) + H 2(sfds - (1C)tf 2 (x)dx - I~ ftf
3 (x)dx

0 x0 x0 x30

(3.40)

+ -~3  (xt 3 [- 3(a) + t2 (s )Jds - 2 ftgt(s)u x(0,*)ds,
00 0

where

H(S) - u (,s) - Cu (0, 8) + 1/ 2 g92 (8).

Elementary inequalities, including (2.5), show that,

0 xb

'C 1/2 lux 'It) 1 2 + Iu( ,t) 1t0/3.

Putting together (3.40), the last observation, and the already established (3.33) yields,

*u (-,t)1 2 4 ft1(2(O0 5 ) + H 2 (s) Ida 2& 10/3 + 2( l+e)Uf 12
ax x 0 x

- f3 (x)dx 4 2 ftl_ _I 9
3(s) + 1Cq2()Is

30 0 31e t()Is
where a 0  is the constant on the right of (3.33). Inequality (3.34) now follows, and the

proposition is proved.

A theorem of global existence of solutions of (3.1) and (3.4) is now in view. its

statement is postponed until after examination of one other aspect, of importance in the

analysis in sections 4 and 5. This aspect Is embodied in the next proposition.
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PROPOSITION 3.7. Let F e C( n Hk (3) and G f C (O,T), with F(O) G

k ? 3, m > I and k m i. Let v be the solution of (3.4) defined in CT. Then there

exists a constant C such that, for each t E (0,T],

l3ijv(-,t)I C, (1
x t L2((t,))

provided that 0 m J (a and 0 4 i 4 k+j.

Proof. Throughout the demonstration, C will denote various constants, which are

independent of t in (0,T]. It will be convenient to introduce another condition,

denoted (M)l, which, for a function w defined on iT amounts to the requirement that

w(*,t) 4 H ((t, )) for t E (0,T], and that

Iw(%,t) 1 C,(IH ((t,m))

independently of t in [0,T].

According to (3.33) and (3.34) in lemma 3.5, ()I holds for v itself. Thus v

and vx  satisfy (M). For one-dimensional domains, H1  is an algebra, so that products

of HI functions are again in H1 . Thus (1+)v + /2 v
2  satisfies (C)I• Hence if, as

before,

J(x~t) = ft[(+I)v(xs) +l/2 v
2 (x,s)]ds,

0

then J satisfies (*)1' So J and Jt satisfy (M)I. It then follows from formula

(3.21) that vt satisfies as well. This observation may be used inductively to

show that 3tv  satisfies (C)1 , for 0 i m a.
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Turning now to spatial derivatives, since k > I formula (3.24) shows that v

satisfies (*),. This means in particular that Jx  satisfies (*),. Since X > 2,

then Fxx 4 H I(3), so, by reference to (3.26), one sees that vxx satisfies

Proceeding inductively, and using (3.27), it follows that aiv satisfies (*)1 if

j ( k-1, and so kv satisfies (').
x

From (3.28), vxt is observed to satisfy (*)!" The differential equation (3.4a)

, shows that vxxt  satisfies (*)1. Using the differential equation, the results already in

iv
hand, and induction, mixed partial derivatives of the form 3 x v , where j > 1 andxt

ii
i > 2, are seen to satisfy (*), when j 4 m and i 4 k+J-1. Hence a a v satisfies

xC t

(') provided that 0 4 j 4 m and 0 i 4 k+j. The desired results are now all

established.

It is worth summarizing the accomplishments of the present section. A the

transformed problem (3.4) is only of transient interest, the theory is recapitulated in

terms of the regularized problem (3.1). Thus the results stated now are consequences of

the established propositions and the transformation (3.35) taking (3.4) to (3.1).

k -+
THZOREM 3.8. Let c > 0 and T > 0 be given. Suppose f e C b(a) and gE

. Cm(O,T) with f(O) - g(0), k ) 3, m )1 , and k > m. Then there exists To > 0 and a

unique function u in Cb( rx(0,T0j) which is a classical solution of the initial- and

boundary-value problem (3.1) corresponding to the given f and g. Additionally,

ii -oau E Cb(i x(0,Tl), (3.41)

for I and j such that 0 j ( m, 0 4 i 4 k, and I+j 4 k. moreover, if f E

that case, there is a constant C such that, for 0 ( t 4 T,

I a' a a( " ,t) I ( C,x tI
for i and j such that 0 4 J 4 min{r,m), 0 ( i 4 r, and i+j ( r.
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As a corollary to this theorem, the following result emerges. It is this corollary

which will find explicit use in the upcoming sections.

COROLLARY 3.9. Let t > 0 be given. Let f C H() and g eC=(f+), with f(O)

g(O). Then there exists a unique solution u of (3.1), defined on the quarter-plane

R +ft + which is bounded on finite time intervals and which corresponds to the data f

and q. Moreover, u c C (a XR
+ 1 

and, for each k ) 0,

Ia t a u:). F C( , (a, (3.421
xt

for all i,j - 0.

Proof. The existence of global solutions follows immediately from the theorem and the

uniqueness result. Also, for any ij ) 0, k > 0, and T ) 0, w - aXatu is bounded

uniformly in Hk(l+), for 0 ( t 4 T.

It remains only to check that the mapping t " w(*,t) is continuous, from [0,T)

to k (It + 1
. But, in fact, u 6 L1(0,TH k( +)) and ute L(0,TIHk (i +)). It follows

immediately (cf. 1193) that u c C(0,TiHk(l+)). The corollary is now verified.

-31
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4. ESTIMATES IN H3 (e ) 
FOR THE REGULARIZED PROBLEM

The purpose of this and the next section is to derive ariori bounds, which do not

depend on C, for solutions of the regularized initial- and boundary-value problem,

UU + U - = 0, in i4 x[0,Tj, (4.1a)

and

-4

u(x,0) - f(x), for x C R

(4.lb)

u(0,t) - g(t), for t E [0,T].

Here, T is a fixed positive real number, and the aspired-for bounds will hold

independently of t in [0,T].

Throughout this section it will be assumed that f e H (R+), g e H"(O,T), and f(0)

- g(0). In consequence of corollary 3.9, for any E in (0,11, there is a classical

solution u - uC of (4.1) which is such that

u £ C (R X10,T]),

and, for integers J,k • 0,

3ju E C(O,TItHk (R)).
It t

Some preliminary relations, established via energy arguments, will be derived in a sequence

of technical lemmas. These prefatory results will be combined to obtain C-independent

bounds for u within the function class C(0,TiH 3(3)) and for ut within the function

class C(O,THl(3+)).

As a start on this program, recall that from proposition 3.5, there is a constant

a,, depending only on |f| and 1g11,T' such that, independently of C in (0,1],

lu(*,t)' + 0t/[u2 (0,s) + (u (0,s) - Cu (O,s)) 2 ]ds ( all (4.2)
1 0 xxx xt 1

for all t in [0,T]. So, from (2.5) it follows that

lul2 -+ I 2 sup (lu(',t)llu(*,t)l) 4 a (4.3)

Cb(R x[0,T)) 0<t(T

and, because of the differential equation (4.1a),
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ft (uxOS) - Cu x(O,s))2ds - 1f(gt(s) + UxlOs) + g(s)u(O,))2do
0 0 x

(4.4)

1C c - c(fl,i9l1,T),

for all t in [0,T].

If u is the solution of (4.1) and t e [0,T), define

A 2t) - sup {lu(*,s)12 lu lx ls)121

04sr-t 3 xxx

0 ftC2  ( + u x + , (os) + C2 2 (0s) + Cu2  (0,s))ds,

and

a2 (t) - sup 'ut (* ,) 2 + ft u2 t(0,s)ds.
0<s< t0

It will be shown that A(t) and B(t) are bounded on [0,T], independently of C small

enough. The first step in obtaining this result is the following H2 (K+)-estimate.

LEMMA 4.1. Let T > 0, f E H (R+), g E H'(0,T), with f(O) - q(O). There exist

positive constants C,, a2  and ci, where

C, 9 1 f1
1 1g1 1 7,T) a2 a2(lfl2 +  2 If xxx1,1911,T),

SC , - Cl(|£al Flgl1,T ,

such that the solution u of (4.1) corresponding to the data f and g satisfies

B 22  
2  ( O 's) + u (0,.) + C 2u 2(Os) d s

0

provided that t e 10,T] and C C (0,C1|.
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Remark. The presence of the last term on the right-hand side of the above inequality

means that this estimate is not directly effective in bounding lue*,t)l , independently

of C.

Proof. For each t in [0,T], define V(t) as
2 2 1 4 .EU2xd~

V(t) - - 3Cu)Ux - 3uu + -u + c)U )dx.
0 5 xx x 4U 5 xxx

Multiply (4.1a) by u
3 

- 3u2, differentiate (4.1a) once with respect to x and multiply

the result by -6uu x  -U, add the two equations thus obtained, and integrate their

sum over R x(O,t). After several integrations by parts, there appears,

V(t) - V(O) 4 i. ft[u2  (0,.) + u2 (O'.)Ids50 xx

4 + 15 tO2s) + g
3  9

( 
2

2

. ig (s) + -g () - (0,) - g (s)Ux(Os)

0

6 2 32

-6g(s)u (0,S)U (0,S) + 6g(slu 2(O,s) - 32O,s)Uxl,)

(4.5)

- xx (0,8)3Uxt (0,s)]ds

+ C J[6gt(S)ux(,S)ux (0,s) + 6g(S)u (O,S)ux (0,s) - 3u2 (0,S)u (0,s)
t x x9tx x xt x xt" 0

- 3(s)ux (0,s)Jds + c ft f[3ux u + 6uu u - 3u2u x ]dxds.
t 0 0 xx

Because of the relation (4.2), the first seven boundary terms on the right-hand side of

(4.5) can be bounded in terms of the data f and g and a suitable small multiple of the i
two boundary integrals on the left-hand side of (4.5). Using (2.5) and (4.2), it follows

that for any 5 > 0,
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ftu2(as8)u(.d Eu (ftu2(O,a)d, ftu
2 (~~ /

0 cb(ix([Ot) 0 0

4 r2 sup (Iu ( ,s)'/2 'u ( .,s)l /2)(rtu 2 (0,.)d, ftu2 x(0, a)do) '/2} (4.6)
0484t 0 0

Sa 3 "3 + 6 sup u ('.,a), 2 + fru(0,,)ds).1 0<t xx0

Since

fgt(s)u(os)ux(0,s)ds C *x' - U ot1 (ftu ,a)ds) 1/2

0 Cb(R x[o't]) 0

a similar bound holds for the term

-£ t (S)Ux (O'a)U3x(O,a)ds.

0

The estimate (4.2) also implies that

£2 ft2 fc 0s uO's)) 2 do+!tu 2 (C.)dd)
xut(O,s)ds 1- 21(.xOs -U xt* x

0 0 0

2 I + 2 ftu
2 
(Os)ds.

0 xx

As a consequence, bounds similar to that in (4.6) obtain for the terms

Sftu (O OUt(Os)ds and C ftg3(S)ux(O,)ds.
. 0 0

Making use of (4.4), the term,

Sftg(S)u x(O, s)uxxt (0, s)ds,

0

may be bounded in the same way.

Still relying on (4.2) and (4.3), the term

-3 fuu 2 dx I 31ul tu 2 dx
0 x Cb(i+ O,t') 0 x

3/2'3a 1

-35-



Hence,

39. .2 d. 4 V(t) + 3a1 2

0 xx

But, by (4.3), Jul does not exceed the value a/2 on i+x[0,T]. Consequently, if

E1 . (25a )2, then for 0 ( C ( E

6 3/2
5 dx C V(t) + 3a,50 .

for all t in [O,T].

Therefore, if (4.5) and a suitable multiple of (4.2) are summed, and use is made of

the above estimates, then for t in [0,T] and E in (0,EI

0 xxuxOsld
U 8 2 ft3 t2 (0.) + u2 ( 2 +£2
(*,2 0 ru x (Oax ('s~s) t(~

'a - u (o.e u€,s)ds+ f 3 u + 6u u u - 3u2 u u 'dxds.
2 X x xt x xxx t x xt

Here, the constant a2  stems from V(O) and from the various combinations of aI  that

appear in the foregoing estimates. The desired result now follows from the last relation,

(4.2), and the definitions of Aft) and B(t).

The estimate of the H2(**)-norm of the solution u of (4.1) given in lemma 4.1 will

be used in determining the following bound for ACt).

LEMMA 4.2. Let T > 0, f f H (R ), g f H (0,T), with f(O) - g(O). There exist

positive constants a3  and c2 , where

3 - a3 (If13 + If IgI2,T) and c2  c2 (IfmIgilT),

such that the solution of (4.1) corresponding to f and g satisfies

2Ct) Cc2(A3(t) + (1+A 2(t))B 2lt)] aA3  + 1/2c2  A2 ()Bl.)ds,

for all t in [O,T] and C in C0,E1].

Remark. The EI appearing in the above statement is that derived already in lemma

4.1.
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* Proof. AS in the proof of the last lemma, the desired result will be obtained from a

technical "energy" argument. In the proof, various constants dependent on aspects of the

data f and g will appear. These will generally be denoted simply by c, and this

symbol's occurence in different formulae is not taken to connote the same constant.

Define, for each t in 10,T1,

, 08 U
2  

36 
2

W(t) - r - -( U + u ) - 6(u - euxx)u
35 xxxx xxx (

2 2 1 5 4 36 2
j + 6(u + Cu )- 3 3cu - cuuxx x ]dx.

2 36 2 4
Multiply (4.1a) by 12uux - ruxx - u , differentiate (4.1a) once with respect to x and

multiply this by 12u2Ux , differentiate (4.la) twice with respect to x and multiply this

216 72by - 3 -uxxxx - -Uxx,  add the three resulting equations and integrate their sum over

1 x(0,t). After many integrations by parts with respect to the spatial variable x, there

appears,

W(t) - W(0) + Loa ft[u2  (0,s) + U2  (0,s))ds
35 a xxxx xxxt0

- 36 2 , 2  2 , (. 5 1 6
SS)U)ux(O,s) ( ()
0

g 4(s)(u (0,S) - EU (0,9)) + eg3(s)u 2(O,s) + 12q 2(S)u (Os)(U (0,S)

- Uxxt (0,8)) -12g(s)u (0,s)(U xx(0,8)) - Cu xt(0,s)) + 3u (0,S)

. ,66 2 2 72

-4 -' W Uxx (0,S) + ux(O,s)uxx(O,s)(uxxx(O,s) - u xxt(0,))

72 tOsu t )144
" 5" ex ' XX'(U (0,S) - sut(0,8)) - 1-x(Os)Uxx(Oe)uxxxOs) (4.7)

144 2 72 36 3+ -3g(s)U xxx(0,S) - (S)Uxx(0,s)uxxxx(0,s) - 5uxx (0,S)
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216 72
TS xx 0'~u xt(0s)+ y-Cg(s)u x(0,5)uxxt(0,s)Ids

4Uxt 4Uxxxxt 5 xxt72-ft f"4 ' x--x + 24 uxux t+ -T U .x U xu0 o 0

72 2 36 2
+ rux uxxxxUxt + 12uutux - T-utuxxx~dx ds.

First note that, because of (4.2), there is a positive constant c, depending on

OffI and so that

1 8 (IU (,t) + £lUxx,t)1
2) - 72 t) 3 w(t) + C,

(.,t)12 +(t)

35 xxx

for all t in 10,T3. Also, in consequence of (2.1) and (4.2), there is another constant

c, depending again on OflI and 1911,Tl such that, for any 8 > 0,

I'u 1 2 1- 2{ sup (,ux(-,s)IIu (,s)I)}c b (i x1o't] ) OCs'.t

(4.8)

( c6- 1 + 8{ sup |u (,s)l 21.
0(st xx

By an analogous argument,

Eu I < c - 3 + at sup lu (',s)52}. (4.9)x Cb(it+x[O0,t]) O494t  xIXXX

Taken together with (4.2), these estimates imply that there is a constant c, depending on

If, and 1911,T' such that for all 5 > 0,

ft u x(o's), x (o's~u xxo(,9,ds 19 ,u,, _,. I Stu(O~s)d, tu2..,O(,s)ds) I2
X b(R x(o,t ) a 0

c[S - 3 + ftU2x(0,s)ds] + 8{ sup lu (,s)52). (4.10)
0 XXX 0s((t XXX

By adding (4.7) and a suitable positive multiple a - a( sup Iu(*,s)I) of the inequality
o~sat 1

stated in lemma 4.1, and using (4.2) and (4.3), bounds similar to those exhibited in (4.10)
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may be shown to hold for all the boundary terms on the right-hand side of (4.71 except for

the last three. Choosing S appropriately, it may thus be inferred that, for all t in

(0, Ol , and for all t in O,T1,

3[A W tC 72 xUxt(O,s)dsl - -A (t)

2It 36 3 21603a + c /2 st -It[(() (O,s) + 3-- uxxO,s)ut(Os) (4.11)

3 2 0 0 7- 5-1x xt

21
- g() (0O)U (O') 18 (O,s)u (O,s)lds.

H Here a3 - a3(If#3 +e 1f x I.1"2,T) and c2 - c2 (,fI ,Ig, ,).

To complete the proof of the lema, it suffices to control suitably the boundary terms

appearing on the right side of inequality (4.11). To this end, observe first that (4.2)

and (4.9) imply

fu3(O,s)ds 4 *u 1*2 tu 0,)dxxxx -+X

Cb(R [0,t]) 0 Os

4 lu 12 f(Iu (0,e) - U xt(0,s)l + luxt (Os)Ilds (4.12)
Cb( (X[O.t) 0

Sc(6
- 3 

+ 6A
2 
(t))1 + e2a2(t)),

for any 6 > 0, where the constant c depends on Ifl I ' IqIl, and T. Next note that

equation (4.1a) implies

- 1% (0,s)u (0,s)ds
- xxx xxt

ft qt 3s) + ux(0,s) + g(s)U x(0,s) - Uxxt (Os)JU xxt(0,)ds.

0

Integration by parts in the temporal variable yields
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ft l (s) + UxO,s) + g(a)u x(O,s)ju xxt(O,s)ds

(aqts) + u (O,s) + q(s)u (O,s)Uxxlsl 
8-t

- tgfttl(s) + uxt(Os) + tlS)u x(0,s) + g(s)uxt (,s)]u xx(0,s)ds.

0

From (4.1a) it also follows that

u (O's) - Cu (O's) - [U 
(O '

s) + u
2 
(O'S) + g(s)U (O's) + U (0,s)]. (4.13)

xt xxxt xx x YX xxxx

Hence, due to (4.8) and (4.9), for any 6 > 0 there is a constant c6 , depending on

6, Ifl1 and 1912,T , such that

ftu (Os)U x(0,s)ds 4 c6 - C ftu2  (0,s)ds
0 

0 xxt 0 xt

(4.14)

+ 6[A 2 (t) + ftux2 (O,s)dsl - E ft(l+g(s))u (0,s)u (O,s)ds.
0xxxx 0 xx xxxt

Similarly, it follows from (4.8), (4.9) and (4.13) that, fc: any 6 > 0,

-ux(0"s)u t(
0
,)ds 4 c6 + 6[A

2 
(t) + Utux

2 
(0,s)ds]

0 
0

(4.15)

- ft u xx(0,S)U xxxt (0,s)ds,
0

where the constant c6  depends on 6, IfI and 1911,T" Combining (4.15) with (4.11),

(4.12) and (4.14), and choosing 6 in a perspicuous way, there appears,

aA

2A
2 
(t) - 2 [A

3
(t) + (11 + A

2
(t))B

2 
t)] a3 + £Y2c2 ftA

2
ls)B(s)ds

0

(4.16)

t18 216 - 2R8
- _((---s + 21 - (s)lu (Os)ux (0,s)ds,

holding for all C in (0,E1I and t in 10,T]. Here,
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"=a a (ItS 3  c' 2 1 .,g n

a3  I 1r | xx lg92,T and c2 c2 (f1,lIgI 1,T).

To estimate the boundary terms on the right-hand side of (4.16), use (4.9) again to deduce

that, corresponding to any > 0 there is another constant c6p dependent on

6I f11 and 1 11,T' such that

a 216. 288
-C +216 + 288 uxxxt (O,.)ds

35 3 C(,T) xxxxxt

( c6 + 5A
2 
(t) + 6E2fUtxxtl0,slds.

0Xxxt

So, the only term still presenting difficulty is the final one in (4.17). To estimate

this quantity, differentiate the regularized equation (4.0a) twice with respect to x,

multiply the result by 2euxxxt and integrate over R+(Ot). The effect of these

operations is to produce the relation,

C(lu (.,t)1 2 
- lu (,t)1 2 ) + C2Ux2 (O,s)ds

xxx xxxx 0xxxt

Ixf - xfx x(O
's)i (4.18)

.; 0

+ 2Cftu xx(0,S)u xxxt(0,s)d - 2 ft '(uu)xxuxxxt d."
0 O0 0

The last integral on the right-hand side of (4.18) seems somewhat awkward. However, after

integration by parts,
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r •Y U dxd . f f"(u u + uu ) xxxtdXds
0 0 0 0

r= 1 t/u(x' a) u 2  (x,*) - u 3 (x,s))dxl 00

+ 3 ftuxOas)[uxx CO,s)u xt(Os) - uxx O,s)uxxtlOallds
0

+ t r(3uu xxuxt 3u x u xxx t - 1/2 U
2 
xxUt)dxds.

0 0

Also, by (4.8) there is a constant c, dependent on I1f1  and Ig11l,., such that

,t "(0,8)u .(Os)u (O,e)ds C 3 92 (t),U I + ftu2 x(O,s)d,
x xxx xt x Cb-+x TJ0 Cb(RX10,T] ) 0 X

( cE2 1 + A2(t))B 2 (t) + A2(t).

And,

efJtu(0,s)u (,0s)Ut (0,s)ds 4, u *2 ftu2 (0,o)S. + 6 ftu2  (O,s)d.
xx x C b(i+ [0t)) 0 0 0 t

( cCA3(t) + A2 t).

Referring to the definition of A and B below (4.4), and applying elementary estimates,

it follows at once that

:cf , f"(3u u ut+ 3nu u - 2u )ds+ 
x xxxx xt xxUt)dxd

0 0

4r ft[6CA 2 (.)(s) + 61/2A2 ()B(s) + £A2 (s)B(s)]ds

0

13 1/2 ftA 2 (s)B(s)ds.

0

Here, and above, the restriction C ( 1 is used. The last few relations combine with

(4.18) to produce the inequality

E
2 r u2  (0,s )ds 4 c + cIE I/2f A2 ()v(s)ds
0 xxxt

(4.19)

+ c'(A 2(t) +C[A 3 (t) + £(1+A 2 (t))9 2(t)]}.
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If, in (4.17), 8 is now chosen small enough, the desired inequality follows from (4.10.

(4.17) and (4.19). This completes the proof of lemma 4.2.

To make effective use of lemma 4.2, an estimate for 9(t) is needed. The following

result will be sufficient.

LEMMA 4.3. Let T > 0, f E H(3+), g c H (0,T), with f(O) - g(0). There are

positive constants S4 and c3, with

a4 - 4 lut(*,0)I1 ,Ig2,T) and C3 - c3 (If 3, IS,T),

such that the solution of (4.1) corresponding to the data f and g satisfies the

inequality

a 2(t) 4 a 4 c3 ft ( 1 + A(s))B 2s) + EB3 (s)ds,

for all t in [0,T) and C in (0,13.

Proof. Let v(x,t) - ut(x,t). Then v satisfies the variable-coefficient partial

differential equation

vt + vx + (uV)x + vxxx - eVxxt - 0, (4.20)

holding for (x,t) in R X[0,T]. Multiply (4.20) by 2v and integrate over ft

where t e [0,T]. Then, it follows that

Iv(.,t)l 
2 

+ Ov1l,t)l
2 

+ ftv
2
(0,a)ds

0

"Iv(*'0)1 2 + elVx("10)0 2 + ft(l+q*) ) 2
(
,
)d
, 4.1

2r t - cvxt(o,s)lds - u v2 dxds.
0 0 0

4,

Next, multiply (4.20) by 2(ev - uv - V xx) and integrate again over I3 X(0,t). This

leads to
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-(1),V(.,t),
2 . tu(.,t)v

2 (x,t)d. + J{v2(O's) + (Os) -
6  (t0 's alds

0 0

S(t+C:)IVx-,O) 2 
- ff(x)v2 (x,O)dx + Pgt(s)[C- 2(s)lds

x0 0

(4.22)

- 2fqtt (s)v x(0,.s)d. - 2ftg(s)gt(s)[Vx(O,S ) - Cv xt(O,s)lde

0 0

* + ft f(2Uvvx - v3)dxds.
0 0

The underlying equation (4.1a) implies that

ft fv'dxde - ft fv( UUx + xxx rU xxt )dxds.
0 00 0

The last term on the right side of this relation is potentially troublesome, but after

integration by parts,

ft t v 2u dxds - -C ftg2(s)v (0,9)da - 2 Cft fvv 2 *dxds.

00 0 0 0 0

Also,

ru(xt)v
2 (x,t)dx I u, Ivl,t)

2

0 Cb(+ x[O,tl)

2' ' •~ clv(P,t)I12

* where c depends on Ifl I and 1911, T ' as in (4.3). The desired result thus follows by

adding an appropriate multiple of (4.21) to (4.22) and making the kind of estimates based

on (4.2) that are, by now, familiar.

Recapitulating the outcome of lemmas 4.2 and 4.3, if u is the solution of (4.1)

corresponding to initial data f and boundary data g, and A and B are the associated

functionals defined below (4.4), then A and D are restricted by the system of

inequalities

2 3 2 2 +c'c fA()~~s
A (t) c 2 [A ) + C(1+A (t0B ) a3 + 2c2 PA21s)Blslds,0

(4.23)

B 2(t) a4 + c3 ftI( 1 + A(a))B2(a) + CB3 (.)ds,
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holding for all t in 10,T] and e in (0,Ci). The constants Cl a3, a4, c2  and

c3 have all been previously determined to depend simply on T, on various norms of f

and g and on lu t(,0) 1  The system (4.23) will be exploited to obtain the following

bound on u, which holds uniformly for £ sufficiently small.

LEMMA 4.4. Let T > 0, f c H (f+), g E H'(0,T) be given with f(0) = g(0). Let

u be the solution of (4.1) corresponding to the data f and g. There are positive
constants 2 an c4 , both depending on Ifl4, IgI and lut(1,0)El, such that for

2 and 4f 2,T

i in (0,62] and t in [0,T], both A(t) and 2(t) are no larger than c4.

Proof. For each H e R such that

M > max(A(0),B(O)), (4.24)

let

tM = inf{t e [0,T]:A(t) ) M or B(t) M 1),

with the understanding that if the set over which the infimum is taken is empty, then tM

T. To establish the lemma, it suffices to show that t14 T for some M and all

sufficiently small C.

Observe that on the interval [0,t.), where M is supposed chosen as above, (4.23)

implies that

[I-Cc 2M(I+CM)]A 2 (t) 4 a3 + ,/2c 2  tA
2 ()B(s)ds + c2 (CM)2 ,

0

(4.25)

2(t) 4a 4 
+ c. --(I+A(s)) 2(s)ds + Cc3T 3

0

For each M satisfying (4.24), choose C 2 C 2(M) c (0,min(1/2,CI)) such that for all C

in (0,C2),
I - c2 CM(I+CM) )1/2, c2(CM)2  1,

and (4.26)

c3CTM
3 ( 1.

Further, let At(t) I 1 + A(t). Then from (4.25), if follows that for all t in 10,t M )

and for all C in (0,C2),
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A 2 W)4 6 + 4a3 + 4c C '2 ftA2( .)B(Odl,

a2Ct) 1 + a4 + c3 r A 1(s)U
2 (s)ds.

Hence, in this range of t and C, there are positive constants 0, B and Y,

independent of M, such that

A (t) C +-0C 1
21ft A 1 s)B(.)d.,

=/2 0

(4.27)

B 2 Wt C __1-€1-1/1/ + 2-y; ora (W) 2 (s) do.

~2 0
(First choose a and 0 large enough, and then choose Y large enough. Note then that
a, 8 and Y only depend on the constants a3 , a4 , c2 and c3.) Define A and 3 to

be the maximal solution of the system

+2 (t) 2Y ft -2

1- C '/2 0

Then, A (t) A W(t) and i(t) ) B(t), for all t for which A (t) and R(t) are

"' finite. Moreover-, A1 and B may be determined explicitly as,

(t)e
;(:)" 0 2 aYt and i(t)-C " /2 eyt

: 1-C e 1-C

whenever exp(Yt) < C.1/2 Therefore, if H is chosen so that

H : 2max{cg,OeYT),

and then C 2 is chosen so that, as well as satisfyinq (4.26),

1 -€/2eYT )1/2,
2 '2

then t. - T for all 9 in (0,C2]. Taking c4 m M, the lemma is now established.

The constants C 2 and c4  in lemma 4.4 depend on lu t(,0) I , since the constant

a4 in lemma 4.3 had such a dependence. In order to control the size of A(t) and B(t),

uniformly for small C, some estimate of lut(*,o)EI  must be obtained in terms of the

data f and g. An appropriate bound is forthcoming if the data satisfies the additional
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compatibility condition,

gt()= -[fx(o) + f(0)fx(0) + f~x,(O)1. (4.28)

LEMMA 4.5. Let T > 0, f C H (N+), g E H"(0,T) with f(0) - g(0). Suppose the

data f and g also satisfy (4.28). Then there is a constant a5  depending on If| 4

such that

lut',(0) I ' a5 ,

for all E in (0,1], where u is the solution of (4.1) corresponding to f and g.

Proof. Let o(x) - -CfxlX) + f(x)fx(x) + fxxxW)]. Then ut (,0) is a solution of

the boundary-value problem

Ut (*,0) - eUxxt (,0) .=

u t(0,0) - (10), llm ut (x,O) D 0.
t~f

Hence, ut(,0) is given by

-x/ut (x,0) = e t (0) + M ((x,&)V(t)dC, (4.29)

0

where, as in (3.10),

M(x, &) - =/( I/ ~ )C'VI2 /lexp(-Ix-&I/ 2 ) -expl-lx)/t

It follows immediately from this representation that

14
lu (.,o)l 7--/2 Igt(O)I + cIAm,

where c is a constant which is independent of C. Since gt(O) = s(0), and because of

the definition of P, it is concluded there is a constant a depending on Ifl4 such that

I ut(,0)I 1 a, (4.30)

and this relation holds uniformly for C in (0,I).
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Differentiation of (4.29) with respect to x leads to the relation

u -x/ /  2 1 fwe-(x+t)/c %1/ )d2xtl0) " - /2e t 2E 0

1 a(-x+c)/E SP€()d + L f' (x-&)/ /2

Integrating the right-hand side by parts, there appears the formula

u xO) - 1 Lp (10) - gt(0)] + f M'(x,' 1 (xlO)dC, (4.31)

where

Mk(x,A) - 27/2 exp(-Yb-&j/C 2) + exp(-(x t)/c 1/2

The integral on the right-hand side of (4.31) presents no difficulty. For it is readily

verified that

I M ( 1 , , p ( M d g l IC C l sx l ,
0x

where again c denotes a constant independent of C and 4P !he presumption (4.28) has

the effect of eliminating the other, potentially troublesome term from the right-hand side

of (4.31). Again taking account of the definition of V, it follows that there is a

constant a, depending on 10 such that

Iu (lx ,0)
1 I a, (4.32)

xt

holding uniformly for C in (0,1]. Taken together, (4.'0) and (4.32) imply the desired

result.

Combining the imports of leimnas 4.4 and 4.Si leads directly to the principle result of

this section.

-48-



THEOPE1 4.6. Let T > 0 be given, and let f E H (R ) and g E H"(0,T) and suppose

the compatibility conditions,

f(O) = g(O) and gt(O) + fx(O) + f(O)fx(O) + fxxx(0) - 0,

hold. Let u be the solution of the regularized initial- and boundary-value problem (4.1)

corresponding to the given data f and g. Then there is a constant a6 , depending on

If|4 and 1912,T' such that

lu(ot)U + lu (.,t]I 4 a6 ,
3 t 1 6

for all t in 10,T] and C in (0, 21. Here C2 is the positive constant arising in

lemma 4.4, and so depends on 1fl 4  and 1I1,T as well.

Remarks. A somewhat stronger result than is stated in theorem 4.6 is available from

the foregoing analysis. This strengthened result has been eschewed, for simplicity and

because it is not needed in what follows. Nevertheless, it is worth recording that

£Iu (,) 2 + !r[u2 (0,,) . .2 ~ 2 (s * 2 (0.)
xxxxx xx x(Os+ xxt (Os t(,)de 4 (a6,0

as well, provided that C lies in (0,C ) and t lies in [0,T]. The constants C
2 2

and a6 are those specified in the statement of the last theorem.

The various constants appearing in the statements of results in this section may all

be taken to depend continuously and monotonically on both T and the norms of the data

*that occur. This follows immediately upon examination of the presented proofs. Such an

aspect is without crucial significance in what follows, and so will be passed over.
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5. HIGHER-ORDER ESTIMATES FOR THE REGULARIZED PROBLEM.

The derivation of C-independent bounds for solutions of the regularized initial- and

boundary-value problem (4.1) is continued in this section. The bounds established In

section 4 would be sufficient to establish an existence theory set in the space

L (0,TH 4(R +)) for the quarter-plane problem (1.3). Smoother solutions would be expected

to obtain provided the initial and boundary data is appropriately restricted. A proof of

such further regularity, presented in section 6, is based on the additional estimates to be

obtained in the present section.

The assumption that f c H (R+ ), g c H (0,T), and f(0) - g(O) will continue to be

enforced throughout this section. This hypothesis will be recalled informally by the

stipulation that the data f and g is smooth and compatible. If j is a non-negative

integer, the notation

u (j) - aiu
t

will be convenient, and employed henceforth. This section consists of two technical

lemmas, which lead directly to the principal goal, theorem 5.3. The first technical result

generalizes lemma 4.4.

LEMMA 5.1. Let f E H ( + ) and g E H (0,T) be given, with f(0) = g(O). Let u

be the solution of (4.1) corresponding to the data f and g, and let k be a non-

negative integer. There is a constant

b1 . b1(1gI , max {lulJ(*,O)14,1ul U (',O)tl}),
1.k+2,T 4J<k

depending continuously on its arguments, such that

luk) (*,t)#2 + Clu (k ) (,t)f 2 +
3 xxxx

jrt[u~)(0.)1 [+~ C.k 0,s)]2 
+ £(u (k+l) (O,s)] 2 

Ids bi

0 xxx xxxx x
and

lulk+l)l(*,t) 
2 + ft(ulk+t)Co s)12 do < b 1

0 x
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for all t in [O,T] and C in (0,621. Here, 62 is specified in lemma 4.4.

Proof. First note that for k - 0, the desired result is implied by leea 4.4. The

proof proceeds by induction on k. Let k ) I be given, and suppose that the stated

estimates hold for all non-negative integers less than or equal to k - 1. Let v -

u
(k

)
, 

where u is the solution of the regularized initial- and boundary-value problem

(4.1) corresponding to the given smooth and compatible data f and g. For t in

[0,T], define

A 2(W sup Ev(
° s),1

2 
+ "a)'

2

O(s(t xxxx

+ ft V2
(0,) + V 2x(0,s) + evx2(0,s)]ds

0 x xxxx xxt
and

B
2
Ct) = {uv( (*,s)' 4 vt(0,s)ds.

O~e~tt 0

The induction hypothesis implies that

lug 3 + Iv 1 + c,
L (0,TH (R+)) L (0,TiH C(+))

and so (5.1)

lUg 17(0,T IW2,"(,t+)), Ivl LO + (,T C,

L (07gW U )) L CU E[0,TI)

where here, and in the remainder of this proof, c will denote various constants which all

depend on the same variables as the constant b, given in the statement of the lama, but

which will always be independent of 6.

For any integer J ) I the function u
(j ) 

satisfies the equation

u(j ) + 
uW 

+ (uu(J ) 
+ h (u)) + 

u
( j ) 

- culj) - 0, (5.2)
- x xxx xxt

where -11
h Cu) =1/2 (i)u(1)u(i

'
i)

.

Ii

The induction hypothesis also implies that

IhkCU)! ( clhk (u), 34 c. (5.3)Ic LC0,TW
2
'(IU+)) Ic L 10,7gM3IR+))
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77

The functions A(t) and B(t) will be estimated via an energy inequality derived from

equation (5.2). Taking j - k , differentiate (5.2) once with respect to x, multiply by

-2Vxx x  and integrate the resulting expression over I x(0,t). The outcome of this process

may be written

V(t) + vde
2 0 Xxxx0

SV2 (0) - 2ft v(Os)Vxx (O,s)ds + 2ft f[uv + hk(u) v XXxdXds,
0 00

2 2
where V2(t) Iv (*,t)

2 
+ lv xxx(*,t)Il

Inequalities (5.1) and (5.3) imply that

ft f [uv + hk(u) xv dxds ( c(1 + f.v(.,s),3ds). (5.5)
0 0 0

Because of (2.1) and (5.1), for any 6 > 0, there is a constant cS such that for all

t in [0,T],

IvI 2 c. + 6{ sup Iv(',s)l 2. (5.6)L- L ( ,t;W 2,- i +)) 046' 35 6

Combining (5.1), (5.2), (5.3), and (5.6), it follows that, for all 6 > 0 and t e [0,T),

V xt(0,s)v (,s)ds

0

f{Vx(0,.) + [Uvhk(u)lxx(Os) + Vx(0,s) - Lv (0,s)}v (0,s)ds

a (c 6  6{sup Ev(s)I + vt (O,)dsl - eftVxxxt0,s)vxc(o,s)ds.

c6 ++ 8{spI"813+0

04s1t 0 0

Together with (5.4) and (5.5) this implies that for all 5 0 there is a constant

c, such that

V2 (t) + f(V
2 (0') + V

2
xx(Os)lds

(5.7)

c5 [1 + rA 2 ( ds) + SA
2
(t) - 2tVxxxt 0,s xx (0,s)ds,

0 0

---m -52-
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where A is defined above (.)

Next, differentiate (5.2), again with j k ), twice with respect to x, multiply by

+
-2v xxxx and integrate over R X(0,t). After suitable integrations by parts, there appears

NF (t) + fJEv2(0,s) 4 0,)d
0

(5.8)

V V(0) - 2fv (0,S)v (0,s)ds + 2ft r'[.,vh (u)] v dxds,
3 )xxt xxx 0 0 k xxx xxxx

holding for all t e 10,T), and where

22
V3 (t Vxxx (t,+C xxxx*t)

Observe that

ft tm(uv) x v xxxdxds -ftt(uv 4 +3u xv 4x+3u xxv 4 +u x v)v xxdxds
o a xxx 0 0a x x xx xx xx

- -ft 1/2 g(s)v 2COgs) + 3u (0,s)v (0,6)v (0,e) + 3u (0,s)v (0,s)v (0,s)
xxx X Xx xxx xx x xxx

+ u x (0,s)v(Qs)v x (O,s)lds

0 x xxx xxx

The induction hypothesis and the fact that

ft IV'.(*a' 2  + doa1 cftA2 (.)ds
0 17(it 0

$ implies that there is a constant c such that

ft f~ u X v xv x dxds < ftlvx(.s)l lu x (,s)IIv x (*,s)lds
"9 0 axxx L(R+)

Scit A 2(s) do.
0

Also, It followis directly from the regularized equation (4.1a) that

u CUM - (uu +4 u 2+u +u )M
xxxx xxx xx x xx x

Hence, from (5.1) and the induction hypothesis,

ft t-u vv dxds 4 ft1Ij(* s)I Iu (,'s)llv (1,s)lds 4 cf t A 2(sds'
n 0 xxxx xxx 0 L(,K+) xxxx xxx 0
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for all t in [0,T). By (5.1) and the above estimates, it may now be concluded that

ft f(uv) v dxds, o[ + ftA(.)d. + ftv 2 (0,s)dsl. (5.9)
0 0 x xxxx 0 0

To estimate the rest of the third term on the right-hand side of (5.8), note that

r (hk (u)) xVxxxx ds

- - f(h~u())x(0.5s)vx(Os)ds - t f"(h (u))v , ds.
0 

O0 0

Equation (5.2), once-differentiated with respect to x, is

u (J) cu'jlJ)- [uulj) + h (U)] + u(i) + ulJ+1)1.

Together with the induction hypothesis this relation implies that

i(hk(u)) xxxx(,s)1
2 d ( 1 + L

2
ftA

2
(s)ds].

0 0

Therefore, using the induction hypothesis and the estimate above, we may conclude that

ft t(h (u)) v dxds 4 c[1 + ftA2 .do + ft v2 (0,s)ds). (5.10)
0 0 xxx xxxx 00XYX00 0 0

It remains to estimate the boundary term on the right-hand side of (5.8). The

equation (5.2), with j - k again, implies

- ftVxxt (0,S)v xxx(0,s)ds

0

- xxt (O's)(vt(O,s) + vx(O,s) + [uv+hk(u)1x(Os) - (Vxxt(O,s)Jds.

-9 Integrating by parts with respect to s yields the relation

ftVxxt(Os)vt0,s) + vx(0,s) + [uv+hkl(u)]xO,s))ds

0

V (Os)(vt(O,s) + v (0,s) + luv+h(u) (0,8s}0

- xx (O's)(v tt(0,.) + v xt(0,s) + [uv+hk (u)1 xt,s))ds.

0

-54-

* A



From (5.1), (5.3) and (5.6), and the fact that vtt(,e)- g(k+ 2 )(8) and vt(0,s)

g(k+1(a), it thus appears that for any 8 > 0 there is a constant ca such that

- ft (xxt ( O,VdxxxOede

0
(5.11)

ca - Evlt(0,e)ds + 8A2 (t) - ft1+g(s))3v (°,s)v (0,)ds.
0 xxt 0 XK 2ct

The estimates (5.8), (5.9), (5.10) and (5.11) and the identity

- + [uv+h (u)3 + v --.xt Vx t xV xxxx Cxxxt'

obtained from (5.2), now imply that, for all S > 0, there is a constant ca such that

for all t [ 0,T],

V (t) + ft [V2 (0,s) + v x2 (0,s) + v2 (O,elds3 0 X XXX xxxxxt0

Call + ftA2 ( (s)da + ft V 2 (0,a)ds1 + SA2 (t)
0 0

-2Ct[1 + g(a]V xx(,s)vxxxtlO,e)ds.
0

By adding this estimate and a suitable multiple of (5.7), and using the induction

hypothesis again, it appears that for each 8 > 0 there is a constant ca so that, for

all t in [0,T],

A2 (t) 4 ca[1 + tA2 (s)del + Ge2 Vxtv(0,s)ds. (5.12)
0 0

Inequality (5.12) is not useful until the second integral is bounded. This may be

accomplished by virtually the same argument as was used to bound the corresponding term

appearing in the proof of lemma 4.2. Differentiate (5.2), with J - k, twice with respect

to x, multiply the result by 2Cvxxxt, and then integrate over l x(0,t). This leads to

the identity
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C (IV (xlt)12- IV (,to2) + CftV 2  (0,)d5.13)

xxx xxxx 0 xx

0

C(V (') V ( 1) + tv2  (O,alds (5.13)
"{Ixxx('O1 Ixxxx('O 0 xxt

+ 2 ftV xx(Os)V (O,s)ds - 2C ft ruv+hk(u)ljx dxd,.
0 xxxt 0 0

Since (5.2) implies that

Eft fUV+lh k\('.Vxxxt U
0 0

ft [fiuv+hklx.x(Vxxxx + [uv+h(u)) + vx + v }dxds

it follows from (5.9), (5.10) and the induction hypothesis that for all t c[0,T],

)fo o[Uvhk(u)lxxxv dxds

S0 0

C c(I + ft[A 2 ( ~)()d t (0,9)d.).
0 0

In consequence of (5.12) and (5.13) we therefore infer the existence of a constant c such

that

A2 (t) < cit 4 ft(A 2 (s) - A(a)B(s)jde), (5.14)
0

for all t C [0,T].

Next B(t) will he estimated. Let w - u(k + 1). By (5.2) w satisfies the equation

Wt + wx + [uw+h k+(u)]x + wxxx - ewxxt - 0. (5.15)

Multiply this equation by 2w and integrate over R X(O,t) to obtain

Iw(P,t)E 2 + eLw (',t)1 2 + ft w2 (0,s)ds
x x

0

= Iw(',0)| 2 + nlw 1",0)|2 + ft[1 + qls)Jw2 (0,s)ds
X 0

+ 2ftw(o,m)w (Os) - ewxt (0,sflds - f fU x w2 + 2w(hk+1 (u)] dxds.
0 0 0

The induction hypothesis therefore implies that, for all 8 > 0, there is a constant c8

such that
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IwCt)12 + ClW (*,t)1 2 + ft w2(0,.)ds
0

c6 [1 + ftB
2
(s)de + 6 ftxx (0,s) - EW xt(0,s)] 2d4,

"0 0

for all t E (0,T). To complete the satisfactory estimation of B(t), multiply (5.15) by

2( w - uw - W xx) and integrate over R +x(O,t). This yields

(1+6) Ivx(,t)12 - (x,t)u(x,t)dx + + [Wxx (,S) - w xt(O,s)]2 ldo
0 0

= (1+)lvw (*,012 - fw 2 (xO)f(x)dx + ft[v.[(O,s) - g2(s)w2(O,)]ds

- 2:wt(0,s)w (0,s)ds - 2ftg(a)v(O,a)[w (O,S) - CW (O,s)lds
0 xt

+ Jt {2uw - utw2 + 2[hk+1 (w Cu) + uw - ew ))dxds.
0 0

Integration by parts implies that

ft fth k+(u)] x wxx . ft[h k+(u)] x(O,s)W x(O,s)da - ft fih k+(u)) xx xddS,
0 0 0 0 0

and that

eft f[h U)] wxdXds - CfW[h (U)] (x,s)v )dxx 8-
k0 0 0t k+1 x x s-0• 0 00

- cf rhk+i(u)1 ~vxda.
0 0

Hence, it follows from the induction hypothesis that for all t E [0,T],

ft j[h~ u)] (w + uw - Lwt)dxds
0 0

C e2 1w (,t)1 2 + cft + jtlE2 (s) + A(a)B(s))ds + ft w2(Os)ds}.
x 0 0

Therefore, if (5.17) is added to a suitable multiple of (5.16), it follows that

82 (t) 4 c{1 f[S 2 cs) + A(a)f(sflds} (5.18)
0

for all t F [0,T) and all E in (0,62] . Here, without loss of generality, C2 has

been presumed to he strictly less than 1.
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From (5.14), (5.18) and Gronwall's lemma it now follows that there is a constant c

such that

A(t), B(t) 4 c

for all t E [0,T]. This completes the induction argument and hence the proof of lemma 5.1.

The bounds established in lemma 5.1 are just what will be needed in section 6, except

that, so far as is known now, not all the arguments of the constant b, are independent of

C. To attain the goal for this section, it will suffice to give conditions on the data

f and g which imply that lu(U)(-,0) 4  and lu(J+(0)1 , 0 C j < k, are bounded,

independently of C sufficiently small. This amounts to extending lemma 4.5.

We have not succeeded in giving an absolutely straightforward generalization of lemma

4.5 to the case j > 0. However, by modifying the data, in an a-dependent way, a result

is obtained which is sufficient for our purposes in the next section. Before stating this

lemma, some convenient notation is introduced.

Let O(O)(x) - f(x), and for each integer j > I define functions V(J} inductively

by the recurrence,

F-S(J+ ) - -[%0
(j

) + %0(J )  
( i ) 0(1) 0(J-i) (5.19)

x xxx + / (1 0  x

Also, for non-negative integers j, let

gl ) (t) =aigt).

Here in the result alluded to above.

LEMMA 5.2. Let f E H (3+ ) and g E H (0,T) be given, with f(0) = g(0). Let

k > I be a given integer and suppose additionally that

g J)(0) = (J) (0), for j - 1,2,-,k.

Then there exists a family {g,}0<C41 in H (O,T) such that

(i) g9(0) - g(O) and limig, gi - 0,

C£+ k+1,T
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(ii) there exists a constant b2 f depending continuously on I0 3k+1, such that

-l J)(.,O0) 1I b2

C 3(k-j)+1 2

for 0 j k and all E a (0,1)], where u denotes the solution of (4.1) with initial

data f and boundary data g¢.

First, two sequences of functions and (w 1 are

introduced. These will be used momentarily to define the modified boundary data t).

If j is an integer in the range [0,k], let V(J) - I] and define and
2C

(J)(0) .(0)
1P on I

+  
by wO 0 - f and, recursively for j > 0,

(J) 1(W-1) + (w(J- 1 ) +1/2 J1 1 (i-1) (i) W(-i-1))C€ C x C )xxx 1-w0. 1] (5.20)

and

w £ = exp(-x/C 1/ )~~ J) )0 f"Cx,O (4)d&. (5.21)wC x C C

1-0 0

Here, as in the proof of lemma 4.5,

M (x A) " 2 exp(-Ix- J/¢') - exp(-(x+t)/C"/2)1

and

ME(x,) - 2 [exp(-Ix-CI/ 2 + exp(-(x+) /C2)

Note that w has been determined as the solution of the boundary-value problem
-P (J)

v Cvxx E

with (5.22)

v(O) - ( and lim v(x) - 0,

where
/~~ ~ () v .21 (J)

i-0
for j - 1,2, "'*,k.
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By differentiating (5.21) the following identities are obtained, for all integers

r 1,

(2r+1 (J))() exp(-x/E 1/2 1,-r +1/2)1 (i3
2

lip ( o) - l

x  ( x £ ( -

(5.23a)

+ t'MclXC)C2r+l))( )d
0x

and

.2r (i(x) exp(X/C /2)_rX[j) C 1 3.2ij))(0)]SX C x C

(5.23b)
: + i'Mlx~gll2r,, )lj d

+. f" M X (~gC x£
0

Hence, there is a constant c, independent of w S and such that

1 w£ 3(k-j)+l C 3(k-j)+1' (5.24)

Z0v 0 4 J • k. Using (5.20), (5.24) and a simple inductive argument, it follows that

there is a constant b2  b2 (Ift3k+1) such that
4

IIw ~ V Wl b ,  (5.25)

C 3(k-j)+1 C 3(k-j)+1 2

J ; indpendntly of C in (0,I) and j in 10,k].

For each £ E (0,11 define modified boundary data g (t) by

Mclt) - g(t) + k L - 11)
J-1 J1 1

Observe that gC(0) - glO). Also, since glj)(0) - OJ)(O) by assumption,

ge (0) - X( (5.26)

for 1 ( j ( k.
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Now let u denote the solution of (4.1) with initial data f and boundary data

g¢. It follows inductively from (5.20), (5.22) and (5.26) that u (J)(,O) - w 
(J )  

for

0 C j 4 k, and hence the desired bounds on u() ('0) follows from (5.25).

To complete the proof it is only required to check that

lim Ig - gik+1,T - .
e4o

Because of the definition of ge, this is equivalent to showing that

lim I J  00 (Jo)l = 0,

(J)

for 0 j< k. Referring to the definition of A below (5.22), and keeping in mind the

bounds in (5.25) and the simple inequality (2.5), we see that

A(J) - (J)() + o(C),

as C + 0, for 0 ( j 4 k. More precisely,

) (J) -1 I
(J )

C cb . (5.27)
C - (0)I C 3(k-J)+l 2

Hence It is enough to show that

lim Io(J) (0) - (j)(o)l - 0,
C+0

for 0 4 j 4 k. This latter relation will be proved by establishing that the estimate

I (i) - Si)l  
1/4  

1(5.28)
C w3(k-i), (-+) cc

holds for 0 C i < k, where the constant c - c(If 3k+).

The inequality (5.2A) is proved by induction on i . For I = 0 and I - 1,

(528) follows since (0) 0) f and v () Assume (5.28) holds for i J,

C Clossume

where I C j < k. In order to establish the result for I - j + 1, note first that the

definitions (5.19) and (5.20) imply that

go(J+1) - I C sup Iw(i) - V(i)

£ 
3 (kup,1).(a+ 0 oi'j w3(ki),(+)

where c - c(IfI3k+l). Since

I (i) . V i) I  C 1/4
I~~W€ W3(ki) c
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for 0 ( i ( j by the induction hypothesis. (5.28) will follnw if it can be demonstrated

that, for 0 i j,

,i) - w R 3(k-i)" (+} cc 4 (5.29)

where again c - c(1 1+). The fact that wM solve (5.22) means that

M ~ M e'2M£ ~ - 1

cx) - (c x)- exp(-x/C )L - ( (10)]Xral(Od.

0

Differentiating this relation with respect to x, in the same way that (5.21) was

differentiated to yield (5.23a,b), and using (5.27), we readily obtain the estimate,

I w Mi _( i M c c , ( ,) I
e - 3(k-i)-1 C 3(k-i)+l'

where the constant c is independent of we M a

(5.25) thus imply that

*w(i) - (i) 4 cc, (5.30)c "£C 3(k-i)-1

where c - c(Iflk ). Also implied by (5.25), and the triangle inequality, is the

estimate

Iw
(i )  

(i- M ,(.3)

- cI 3(k-i)+1

where c = c(If 3k+). Standard results in the interpolation-theory of Banach spaces now
M _ M

come to our rescue (Cf (2.5) and [19, chapter 11). Thus, if h denotes i (iW

then Ihi 1/2 'hi 1/2

3(k-i) 3(k-i)+i

4 clhlI1
4  Uhl 3/4

3(k-i)-1 3(k-i)+1

I c1/4

where c = c(If 3k+ ). This completes the induction argument in favor of (5.28), and thus

finishes the proof of the lemma.
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The outcome of lemas 5.1 and 5.2 is conveniently o~1lected in the following

theorem. This is, in effect, a highar-order analog of theorem 4.6. In the statement of

the theorem, C2  is the same positive oan,Lrit tVat already appeared in theorem 4.6.

THEOREM 5.3. Let T > 0 and a positivre integer k be given. Let f e H(3 + ) and

g E H (0,T) and suppo~e that g(J)(0) =  i)(0), for 0 4 j 4 k, where the

functions (J) are related to f as in (5.19). Then there exists a family (ge}0<e((2

in H (0,T) such that

Ci) ge (0) - g(o), limIx - gIk l, T - 0, and

(ii) there exists a constant b3 - b 3 (Ift 3k+1 ,, ' depending ontinuously

on its arguments, such that

"(J1)(",t)'
2  + n a 4 (J 1 ) (,t),

2  + Iu(j) (,t)l 2 ft(a4 (J-l)(°,s)32

3 x 1

+ 3uJ-1)O'sl)]2 + (a u( l j l O(,0] 2 + CE3 u((O,s)] 2 )ds < h3x

holds for 1 4 J< k and all C in (0,C 2. Here, u (J-1)(x't) (J-1)U (x,t) and u
2 t C C

denotes the solution of (4.1) with initial data f and boundary data ge.
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6. EXISTENCE AND UNIQUENESS OF SOLUTIONS

The major undertaking of this paper is to prove existence of smooth solutions of the

quarter-plane problem for the KdV equation. Using the theory developed in sections 3, 4

and 5, this task becomes comparatively simple. Recall that a function u = u(x,t) is

sought such that

Ut + ux + uux + u 0. for x,t > 0, (6.1a)

subject to the auxiliary conditions,

u(x,0) - f(x), for x > 0,~(6.1b)
u(0,t) - g(t), for t ) 0,

where f and g are given functions.

The issue of uniqueness of solutions of this initial- and boundary-value problem is

especially straightforward to settle. As the uniqueness of solutions of (6.1) is useful

later, it is established first.

3THEOREM 6.1. Let T > 0 and a > . Then, corresponding to given auxiliary data

f and g, there is at most one solution of (6.1) in the function class L (0,TH S(a +).

Remarks. As usual in this paper, we mean, at the outset, by the word solution a

distributional solution of (6.1a) for which the auxiliary conditions (6.1b) can be given a

well-defined sense. Of course if u is a distributional solution of (6.1a) which is

additionally known to lie in a class of smooth functions, it will follow that u is a

classical solution of the differential equation. This point will be amplified later in

this section.

Proof. Suppose that u,v E L (0,T,H(R+)) are both solutions of (6.1) corresponding

to the same data f and q. The Hs(l+ )-norm of u and v is thus essentially bounded

on [0,T]. In particuilar, for almost every t in [0,T), u(*,t), v(*,t) E Ha(R+).

Invoking the Sobolev embedding results (cf. (14, chapter 11), it may therefore be supposed
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that, for almost every t in [0,T], u(',t), u(xl,t), v(*.t) and vx(1,t) are bounded

and uniformly continuous functions on R . Moreover, u, ux , v and v. are essentially

bounded on RiX10,T]. From this it follows straightforwardly that both u and v

converge, in L (0,T), in the limit as x + 0. Thus the boundary value in (6.1b) is taken

on meaningfully.

Let w - u-v and X -1/2(u+v). Then w is a distributional solution of the linear

variable-coefficient differential equation

+
Wt + wx + (Xw)x + wxx - 0, in R x(0,T), (6.2a)

which satisfies the auxiliary conditions

w(x,O) - 0, for x e R+
(6.*2b)

w(0,t) - 0, for t in [0,T].

The boundary condition in (6.2b) holds at least in L (0,T), whereas it will appear

presently that the initial condition is valid at least in the sense that Iw(*,t)| + 0, as

t t 0.

Since Hq(l4 ) is linearly and continuously embedded in HSlU+), for q > s, we may,

without loss of generality, suppose that s < 3 and let r = 3 - a. Note that 0 < r <

3/2. Note also that wx  and (Xw)x  lie in Lw(0,T;H-1 (R))- +  and that wxx x  lies in

"L(0,TH -r(R +)). From (6.2a) it is thus apparent that wt  lies in L (0,TH -r(R +)).

The spaces H0( ) and H (R ) are viewed as being in duality in the usual

manner. The pairing between them is denoted by sharp brackets < , . (For a detailed
4

exposition of these spaces, and the duality between them, the reader is urged to consult

the first two chapters of Lions and Magenes book [19).) Note especially that since, for

almost every t in [0,T], w E HS(* + ) and w(n,t) - 0, it follows that w E Hr(R ),
0

for almost every t in [0,T]. Thus w e LN(0,THS(R+)OH r(R)). For this, it is crucial
0

that r < 3/2 of course. Otherwise a second boundary condition w (0,t) - 0 would be

implied by membership in H0(R ).
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In this situation, it is a standard result (cf. (18, p. 71]) that w c C(O,TiL2 ,

and that

dt' lw(lt)1
2 . (wwt>. (6.3)

Thus, in particular, the Initial value in (6.1b) or (6.2b) is taken on meaningfully. The

right-hand side of (6.3) lies in LI(0,T). Hence |w(*,t)l 2  is absolutely continuous, and

upon integrating (6.3) over [0,t], using the equation (6.2a) and the zero initial

condition in (6.2b), there appears

lw(°,t)l
2  

- ftCw,wx + (Xw)x + w >dT. (6.4)0 x x xxx

Since wx  and (Xw) are continuous square-integrable functions, for almost every t,

and w(O,t) - 0, it is straightforward that

eW,W x> " w(x,t)w (x,t)dx - 0,
0

and that

<w,(XWlx> - = w(x,t)[x(x,t)w(x,t)]x dx

0

4 I1X - Iw(,t)l
2

L (R+x(0,T))

C Mw(,t)12,

where

M =1/2 lu+v 1 +L 10,T;H (R+)

In the last step, the fact that s > 3/2 was vital. Finally, we claim that

<wwxxx> > 0, for almost every t in [0,T]. Fix t and let h(l) w(lt). Then

h E H (It )PHr (a). Let h be a function in HO(U+), say, such that
0

3h0 ) - 31h(O), for 0 4 j < /2.
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Then h - h e H (R*). Hence there is a sequence +*I in VCR) such that 'n h - h

in the Ha(R)-norm, as n . Let h - Dn + h. The sequence {h 'C has the following

n n nil

properties:

i) h E Hm(R + ) and h (0) - 0, for all n, and
n n

ii) h + h in H
5
(R ), as nn

Then 3 3h in H-r(a and h h in Hr(R+), as n +. Hence,

x n x n 0

(h,hx> lim <h ,3
3
h - lim rh (x) a3h (x)dxSn n 

X  
nx

" 
0 n

Sli- r3\ h (x)32 h (x)dx l 1/ [ 0)
2 

-n 1 ( h 1

Putting together the pieces, there appears

IwC*.t)1 2 C MftJC.,r)I 2 dT,
0

for t in [0,T]. Gronwall's lemma thus implies that Iw(,t)l B 0 on [0,T], whence

w - 0 and so u = v, as required.

Attention is now turned to the existence theory. It is convenient to recall here the

notation introduced in section 5. Namely, if f is a given sufficiently smooth function

defined on R then set F(0) ,

o (x1)1x) - (flx) +1/2 f
2
(x) + fxxlX))x,

and inductively, (6.5)

(J+1) (x) - _((J) + I(j) + 112 M( 0(J-) .
x xxx x-O x

Rememher that PJ)(O) - g(i)(0), where g(J) (t) - ajg(t), as before, is just the jth_

order compatibility condition, implied by the KdV equation (6.1a) for solutions that are

sufficiently smooth at the origin (0,0). Here is the main result.
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3k+ + k+l

TH3ORCK 6.2. ^.t 1C he A positive integer, f E H3k+1 (e) and g c Hkoc(1

Suppose the k + I compatibility conditions

g(j)(0) - 0(J)(0), for 0 4 J 4 k,

hold, where 00) is defined above. Then there exists a unique solution u in
- . 3k+1+

L ft(a ;H (a )) of (6.1) corresp tdLng tn the data f and g. In case k > 1, u

defines a clasq1-dAl ,'latton, up to the boundary, of (6.1) in the quarter plane R xR

The proof of this result relies on the theory for the regularized problem developed in

sections 3, 4, and culminating in theorem 5.3. To make use of the last-quoted result, the

following technical lemma seems essential.

LEMMA 6.3. .-t 4 vind g be as in theorem 6.2. Then there exist sequences

{f H )(and ' C '(.R') such that

i) ( 
1 0  

(J) (0), for 0 J k, and

1 f* + f  in H3k+1 (a+

+ n H k1(a),"i)i

9N g n Sloc~a)

Here 0 is as defined in (6.5) with fN replacing f and g - 3jg

Prof Ne tf NcH( n

P roof. Let f." - .'(., -nd cri C'(.) satisfy condition (ii) in the

statement of the lemma, relative to f and g, respectively. Define

-=H ,U!) (I)
(0) -¢( (0), for 0 4 j < k,

where t Aid is given as in (6.5). Then set

g9;(t) - hN(t) - P.

where
k tj

P4(t) - I a4
-6 0 8 "
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By construction, for 0 ( j 4 k,

" (0) (j) N _(J)(0).g (0)-h (0) - -- )
9N N a1  'N

Moreover, % e C (a+), for each N. It remains to verify that + g in Hk+ (R+).
loc

This will be true if and only if PN 0 in H kc ). But, for 0 4 J4 k,
loc

i llm N ( i hJ)o -(J)

)(im a - h 0 )( 0 )) - 0,N+ " a N"W

since f and g satisfy k+1 compatibility conditions. Let T > 0 be given. Then
k'PN' k+l (  • J1 k+1 I

H (0,T) J-0 Hk1 (0,T)

- k

0 Mtai

where the constants Mj depend only on j and T. Since aj 0, as N + + for

each J, it follows that

1 p i 40,-, H k+l(0,T)

as N +° Since T > 0 was arbitrary, the lemma is established.

The next step in the proof of theorem 6.2 is to establish that solutions of (6.1)

exist in case f and g happen to be infinitely smooth.

PROPOSITION 6.4. Let there be given a positive number T and a positive integer k.

Let f c H (R ) and g E H (0,T) satisfy k+1 compatibility conditions,

g(j)(0) - ()(0), for 0 ( j 4 k.

Then there exists a solution u of (6.1) in L (0,TIH 3k+i (R+)) corresponding to the

data f and g. Moreover, there exists a constant

b - b(If1 3k+ 1'qk+I,T

such that

2u(J-J)(*,t) 3 + u(j) (',t)l 1  b, (6.6)
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for 1 4 j ( k, where u(j) - u. The constant b depends continuously on its
t

arguments.

Proof. The proposition follows from theorem 5.3. More precisely, theorem 5.3

provides the following. There is a 8 > 0 and a family [ge} 0 4C48 a Ha(0,T) such that

ge (0) f(0), and

Ig - gi * 0, as C + 0.

Let uc be the solution of the regularized initial- and boundary-value problem (4.1),

corresponding to the data f and gE. Then there is a constant b = b(IfI3k+l,

J
1
k+IeT

) 
depending continuously on its arguments, but independent of e in (0,8],

such that

lu (J-1)(. t 
2  

+ C lu(J_ l)( ,t) 
2  

+ iu(0 ) ('It),
2

3 xxxx1

(6.7)

2 (J-1) 2 (j) 2 (J)
or4 ft{[u"( O'l(s)) + lu (0,8)) + [u (0,.)] + C[U ~(O's)] Me r( b,-!+~~ ltxxxx [xxx Ux +Lxx(Os2}s b

0

for 0 4 j 4 k. (In (6.7), the subscript C has been suppressed when writing u .) And,

from corollary 3.9,

" iU E C(0,TH m(R )),

tc

for all non-negative integers i and m. Thus

{91 U[ o is bounded in L"(0,TH +
t E (0,iHCR4)

for 0 4 j < k , and

faku~ ) is hounded in L(0,TiHI (R))

-* If H is any Hilbert space, then L (0,TtH) is the dual of LI(0,TiH). (Here, H is

identified with its dual space.) In consequence of this fact, the unit ball in L (0,T,')

is compact, for the weak-star topology induced by LI(0,TIH). Hence, by taking a sequence

from (0,5) converging to 0, and passing progressively to further subsequences, we deduce
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the existence of a sequence (z }, with e + 0 such that if
n n

Un (x,t) = ue (xt), n - 1,2,3, °0 ,
nn

then there are functions u and U in L(0,TIH 3(e)) , 0 < j < k, and a function

Uk in L7(0,TH (R+)), such that

u n U weak-star in L (0,TH3 (R )),

3 3+3Ju U weak-star in L (0,TIH ) (6.8)
t n j

for 0 < j < k, and

3 Uk  weak-star in La (0,Tl ( OR ,

t 3n

Sas n Since u + u weak-star in Lm(0,rTH 3(e)), certainly u n u in-ia ic n L(TH3 n

D'(0,T;H 3 (e )). Hence aJu + 3u. for all J, at least in the distributional sense.

Because of (6.8), we may therefore identify Uj with 8Ju, for 0 < j k.

Note also that if Vu = (3 u at u ), then (Vu w comprises a bounded sequence in
n x n t n n I

L"(O,THI(+ ))L7(0,TjH'(e )). Since R+ ) c Cb(e), this means that each component of

A~ +0[Vu nI is a sequence uniformly bounded in L*(R x(0,T)). In consequence. {u n forms

an equicontinuous sequence, when restricted to any compact subset of r-10,T]. Hence for

any M > 0, {un)1  is precompact in C([0,M1x[0,T), by the Ascoli-hrzela lewma. So by

passing to still further subsequences, and finishing off with a Cantor diagonalization, it

may be presumed that

as n +

u u , uniformly on compact

subsets of U X[o,T].

(More precisely, this argument leads to the conclusion that u n  v, uniformly on compact

subsets of R x[O,T3, as n +. This in turn implies that un + v in V'(etx(O,T))

and thus leads to the identification v = u.) Exactly the same arqument holds good for

3ju n , provided j 4 k. Thus, for 0 j <
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as n + +,
3Ju 3 3 u uniformly on compact (6.9)
t n t -

subsets of R x(o,T].

By a different argument, which makes use of the fact that HI(O,M) is compactly embedded

in L2 (0,M) for any M > 0, (cf. Lessea 7 in [81) it may also be presumed that

Sk am n + +0, almost3kun u, -+10

everywhere in R x[0,T].

By passing to a further subsequence, if necessary, it may be supposed as well that, as

u a u + w weak-star in L (0,TH 2(+))

nun

2(
xu v weak-star in L (0,TIH2 (a )),

andn
and 33 + V weak-star in L%20,TjL2+

x n

2 2 +
Because of (6.9), u + u and u * u in V'(R x(0,T)). Hence the identificationsn n

W . u2 , v a ut V 3xU follow. Moreover, at 2u is bounded in L (0,TH- I(34),

so £ 3 t3 2 u + 0 strongly in this space, as n * +n t X n

The reader will appreciate now that there is in hand enough information to pass to the

limit n + in the regularized equations and conclude that, at least in the distribu-

tional sense, u satisfies the KdV equation,

Ut + ux + uux + Uxx x O,

in R x(0,T). Moreover, as u,(x,O) B f(x) and u,(O,t) - ge(t) for 0 < C ( 8, it

follows from (6.9), for example, that

+
u(x,0) " f(x), for x E R +

and

u(0,t) - g(t) for t c 10,T).

Thus u does indeed provide a solution of (6.1) on R E[O,T]. Moreover, by the lower-

semicontinuity of the norm, relative to weak-star convergence, (6.7) implies that
- -lu (j) l't)13  IC b,

for 0 j < k, and
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lukW (',t) 11  b,

where b - b(Ifl 3k+iglk+, T ) is the constant obtained earlier from theorem 5.3.

Notice that, if k - 1, then ut  L L7(0,TH I(e )) and ux, uux  L (0,T1H2(it+)).

Hence, from the differential equation, u 1 L (O,TIH I(M+)), whencexxx

u E L (0,TpH (e+)). If k > 1, this type of simple argument may be continued

inductively. The outcome is that

aiu 4 L"(0,TH3k)+I3 +), (6.11)

for 0 S j 5 k.

Finally, (6.11) and standard interpolation results ((19, Ch. 1, Theorem 3.13) yield

the following additional smoothness results:

t

for 0 4 j < k.

In particular, if k > 1, certainly u c C(0,TjH 4 (+)). Therefore, ut, Ux, uux, and

Uxxx  all lie in C(0,TjH1 (e+)). AS this latter space is embedded in Cb(R x10,T)), it

follows that, after possible modification on a set of measure zero, all the derivatives in

the differential equation are continuous, and bounded, functions. Consequently, if k > 1,

u is a classical solution of the quarter-plane problem for KdV.

The proof of the proposition is now completed.

Remark. Because the solution u obtained in proposition 6.4 lies within the realm of

the uniqueness theorem 6.1, the entire family (u is inferred to converge to u, in

the various senses appearing in the proof. This is because we actually prove that any

sequence (C In in (0,63, with En + 0, as n + has a subsequence such that the

corresponding functions u n I converge to a solution of (6.1), which by uniqueness must

be u.

The last proposition gives very nearly the result stated in theorem 6.2. The only

essential difference is that f and g are assumed to he infinitely differentiable.

Using lemma 6.3, this added assumption may be shown to be unnecessary.
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3k1k+1 +) ar

Proof (of theorem 6.2). Suppose now that f C H1()) and g C Hloc(u ) are

fixed, and that f and g satisfy the first k + 1 compatibility conditions, as in the

statement of the theorem. Fix T > 0. By lemma 6.3, there exist sequences (f N --

H(R + ) and V ", a C(3
+
) such that

f +
f in H3k+1 (3),

and (6.13)

g in R k+ 1(0,T),

as N h + . And, for each NM > 0, fN and % satisfy the same k+1 compatibility

conditions satisfied by f and g. The last proposition thus applies, and it is concluded

that there is a solution u. of (6.1), on R x[0,T], corresponding to the data fN

and %1 . Moreover, c L (0,T,(3(k R )), for 0 j l k, and if

b b(IfN I3 4 .~I 4 1 )
"i bN N bll3k+1,1gNlk+1,T)'

* then for 0 j < k,

L (0,,H + bN,

* and
IlaJ k 4 bN,

t-'N L7(0,T;H1 ( ))

Because of (6.13) and the fact that b is bounded as its arguments vary over a bounded

set, there is a constant B, independent of N, such that

Iatuli < B,

t- L"(O,T;H3I4())

for 0 j < k, and (6.14)

"4 tNl L (0,TII1 (3+))

In consequence of the bounds expressed in (6.14), the arguments of proposition 6.4 may

be repeated without essential change (the extra smoothness available during the proof of

the proposition was not used, nor was the regularizing term -Cu xxt). It is concluded

therefore that (uN}' converges to a function uT , say, in the various ways already

detailed in the proof of proposition 6.4. As before, uT  provides a solution of (6.1)

corresponding to the data f and g, on a x[OTI.
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The above argument applies for any fixed T > 0. Define a function U on + xR by,

U(x,t) - UT(X,t),

provided that t < T. This is well-defined because of the uniqueness result. It is clear

that U provides the solution whose existence was contemplated in the statement of theorem

6.2. The fact that U is a classical solution of the problem (6.1), if k > 1, follows

exactly as in the proof of proposition 6.4. The theorem is thus established.

It is perhaps worth comment that theorem 6.2 also holds if k a 0. This result

subsists on the r-independent P1 (+)-bound established in corollary 3.6. The proof of

existence of these weaker solutions, while a little more delicate than the proof of theorem

6.2, fits more or less directly into the framework exposed in the proof of proposition

6.3. (The extra ingredients may be found, for example, in [8, appendix A].) For this

reason, we content ourselves with a statement of this further consequence.

1+I +

THEOREM 6.5. Let f c H (U' ) and g e H ( ), and suppose f(0) - g(0). Then
boc

there exists a solution u in L (R+ ;HI ( + )) of problem (6.1) corresponding to the
ltc

data f and g.

Remarks. By a solution we mean as usual a solution in the sense of distributions. In

this case the uniqueness result does not apply.

Note that, for any T > 0, ut c Lab(,T;H 2 (3+)) from the equation. Hence UF

C(0,TiH /2(a+)) (cf. again [19, Chapter 1)), so the initial-value is taken on in a weak,

but meaningful way. Note as well that L (0,TH (R)) c L (,TICb(Rfl. Hence for almost

every t in (0,T], u(x,t) is continuous in x at x = 0 * Thus the boundary-values

are also obtained in a neaningful way.
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7. CONCLUSION

The quarter-plane problem (1.3) is argued to be a natural configuration in which to

use the KdV equation for the prediction of wave propagation in a uniform channel. The

general idea behind the use of this form of initial- and boundary-value problem for testing

the appurtenance of the KdV equation may be appreciated by reference to figure 1. With the

liquid initially at rest (f S 0), a wavemaker located at one end of the channel is

activated. The passage of the waves down the channel is recorded by probes, the recording

nearest the wavemaker being construed as the boundary data g(t). Note that if the waves

are in the regime to which, formally, KdV applies, then they are expected to be smooth,

and so g will lie in V(O,T), for some T > 0. In consequence, the data so determined

will satisfy the compatibility conditions, expressed for example below (6.5), to all

orders. Hence the theory developed herein is applicable.

Our theory demonstrates that problem (1.3) has unique smooth solutions, corresponding

to such smooth and compatible data. This is a step in the direction of a satisfactory

mathematical analysis of the situation envisaged in figure 1. Another important step,

which has not been treated here, is a result of continuous dependence of the solutions on

variations of the data. Also, in considering comparisons of the model's predictions with

laboratory-scale experiments, some compensation for dissipative effects must be included

(cf. (10)). Less important, but still of some mathematical interest, is a possible

improvement of the regularity theory to bring this aspect into line with the theory for the

pure initial-value problem (cf. [8) or 116]). We have shown that if f C H 3k+I(e) and
,l +1 +

g c Hoc
(It

) satisfy the appropriate compatibility conditions at (x,t) - (0,0), then the

quarter-plane problem has a solution in La ,3 (e Whereas, we confidently
lbc

expect the solutions to lie in C(e+iH
3
k+(1e)). In fact, this latter point seems to be

related to a sharp version of continuous dependence of solutions on the data.

It deserves emphasis that a satisfactory numerical scheme for the configuration in

view here is essential to effect any quantitative comparisons of laboratory data with

predictions of the model. &special care must be exercised here. First, control of the

high-frequency end of the Fourier spectrum must be assured. Otherwise an untenable error
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may be ceated near x - 0 , due to the large negative phase and group velocity associated

to such components (cf. (4, 2]). Secondly, the integration will in fact take place on a

bounded spatial domain, forcing the imposition of additional boundary conditions. This in

turn will lead to consideration of an initial- and two-point-boundary-value problem for the

KdV equation, and to consideration of the relation of such a problem to the situation

studied here. The difficulties seem numerous enough to warrant insisting on a scheme

having rigorously derived error bounds. Thus far, such schemes seem to be available only

for the periodic initial-value problem. (cf. [1], [2] ,[29] and (30]).

Finally, it is worth remarking that the methods embodied in this paper might yield a

comparison theorem between the quarter-plane problem (1.3) for KdV and the analogous

quarter-plane probem for (0 .4) studied in [5], and used in the comparisons with

experimental data reported in [10]. Such a program of comparison of model equations has

been carried out for the associated pure initial-value problems in E11], using the general

line pursued herein. Thus there is some cause for hope that a similar result is obtained

in the present context.
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